在Carlson–Simpson泛型分区下,每个CBER都是光滑的

Pub Date : 2022-06-28 DOI:10.4064/fm255-12-2022
Aristotelis Panagiotopoulos, Allison Wang
{"title":"在Carlson–Simpson泛型分区下,每个CBER都是光滑的","authors":"Aristotelis Panagiotopoulos, Allison Wang","doi":"10.4064/fm255-12-2022","DOIUrl":null,"url":null,"abstract":"Let $E$ be a countable Borel equivalence relation on the space $\\mathcal{E}_{\\infty}$ of all infinite partitions of the natural numbers. We show that $E$ coincides with equality below a Carlson-Simpson generic element of $\\mathcal{E}_{\\infty}$. In contrast, we show that there is a hypersmooth equivalence relation on $\\mathcal{E}_{\\infty}$ which is Borel bireducible with $E_1$ on every Carlson-Simpson cube. Our arguments are classical and require no background in forcing.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Every CBER is smooth below\\nthe Carlson–Simpson generic partition\",\"authors\":\"Aristotelis Panagiotopoulos, Allison Wang\",\"doi\":\"10.4064/fm255-12-2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $E$ be a countable Borel equivalence relation on the space $\\\\mathcal{E}_{\\\\infty}$ of all infinite partitions of the natural numbers. We show that $E$ coincides with equality below a Carlson-Simpson generic element of $\\\\mathcal{E}_{\\\\infty}$. In contrast, we show that there is a hypersmooth equivalence relation on $\\\\mathcal{E}_{\\\\infty}$ which is Borel bireducible with $E_1$ on every Carlson-Simpson cube. Our arguments are classical and require no background in forcing.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/fm255-12-2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/fm255-12-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$E$是空间$\mathcal上的可数Borel等价关系{E}_{\infty}$的所有自然数的无限分区。我们证明了$E$在$\mathcal的Carlson Simpson泛型元素下与等式一致{E}_{infty}$。相反,我们证明了$\mathcal上存在一个超光滑等价关系{E}_{\infty}$,它与每个Carlson Simpson立方体上的$E_1$是Borel可双导的。我们的论点是经典的,不需要强迫的背景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Every CBER is smooth below the Carlson–Simpson generic partition
Let $E$ be a countable Borel equivalence relation on the space $\mathcal{E}_{\infty}$ of all infinite partitions of the natural numbers. We show that $E$ coincides with equality below a Carlson-Simpson generic element of $\mathcal{E}_{\infty}$. In contrast, we show that there is a hypersmooth equivalence relation on $\mathcal{E}_{\infty}$ which is Borel bireducible with $E_1$ on every Carlson-Simpson cube. Our arguments are classical and require no background in forcing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信