通过机械连接飞机双壁的统计能量分析模型的声音传播路径

IF 0.3 4区 工程技术 Q4 ACOUSTICS
Raef Chérif, A. Wareing, N. Atalla
{"title":"通过机械连接飞机双壁的统计能量分析模型的声音传播路径","authors":"Raef Chérif, A. Wareing, N. Atalla","doi":"10.3397/1/376938","DOIUrl":null,"url":null,"abstract":"Sound transmission loss (TL) through mechanically linked aircraft double-walls is studied with a statistical energy analysis method. An overview of the method is given with details on acoustic and structural transfer path analysis. The studied structure is composed of a thick composite\n sandwich panel representative of a skin panel, lined with an acoustic insulation layer (glass wool), and structurally connected via vibration isolators to a thin composite sandwich lining panel representative of a trim panel. Two types of vibration isolators are considered: a soft and rigid\n mechanical link. Various experimental methods were used to assess the accuracy of this model. This study shows the robustness of the simple four-pole modeling of isolators, which depends mainly on the importance of correctly determining the experimental dynamic stiffness of typical aircraft\n vibration isolators. The prediction of the TL while acceptable was, however, found less satisfactory for the soft configuration. This is traced to the uncertainties on the used coupling loss factor. Finally, a transfer path analysis is performed to identify the contribution of each transmission\n path in the entire frequency range of interest. Results show that non-resonant airborne transmission dominates in low frequencies, the airborne radiation is significant in the critical frequency region of the panels, while the structure-borne radiation increases the noise transmitted in the\n mid- and high-frequency ranges.","PeriodicalId":49748,"journal":{"name":"Noise Control Engineering Journal","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sound transmission paths through a statistical energy analysis model of mechanically linked aircraft double-walls\",\"authors\":\"Raef Chérif, A. Wareing, N. Atalla\",\"doi\":\"10.3397/1/376938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sound transmission loss (TL) through mechanically linked aircraft double-walls is studied with a statistical energy analysis method. An overview of the method is given with details on acoustic and structural transfer path analysis. The studied structure is composed of a thick composite\\n sandwich panel representative of a skin panel, lined with an acoustic insulation layer (glass wool), and structurally connected via vibration isolators to a thin composite sandwich lining panel representative of a trim panel. Two types of vibration isolators are considered: a soft and rigid\\n mechanical link. Various experimental methods were used to assess the accuracy of this model. This study shows the robustness of the simple four-pole modeling of isolators, which depends mainly on the importance of correctly determining the experimental dynamic stiffness of typical aircraft\\n vibration isolators. The prediction of the TL while acceptable was, however, found less satisfactory for the soft configuration. This is traced to the uncertainties on the used coupling loss factor. Finally, a transfer path analysis is performed to identify the contribution of each transmission\\n path in the entire frequency range of interest. Results show that non-resonant airborne transmission dominates in low frequencies, the airborne radiation is significant in the critical frequency region of the panels, while the structure-borne radiation increases the noise transmitted in the\\n mid- and high-frequency ranges.\",\"PeriodicalId\":49748,\"journal\":{\"name\":\"Noise Control Engineering Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Noise Control Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3397/1/376938\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Noise Control Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3397/1/376938","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

摘要

采用统计能量分析方法研究了机械连接飞机双壁的声传输损耗。概述了该方法,并详细介绍了声学和结构传递路径分析。所研究的结构由代表蒙皮面板的厚复合材料夹芯板组成,内衬隔音层(玻璃棉),并通过隔振器在结构上连接到代表饰板的薄复合材料夹芯衬板。考虑了两种类型的隔振器:柔性和刚性机械连杆。使用各种实验方法来评估该模型的准确性。本研究表明了隔振器简单四极建模的稳健性,这主要取决于正确确定典型飞机隔振器实验动态刚度的重要性。然而,TL的预测虽然是可接受的,但对于软配置来说却不太令人满意。这可以追溯到所使用的耦合损耗因子的不确定性。最后,执行传输路径分析以识别每个传输路径在感兴趣的整个频率范围中的贡献。结果表明,非共振空气传播在低频段占主导地位,空气辐射在面板的临界频率区域显著,而结构辐射增加了中高频段的噪声传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sound transmission paths through a statistical energy analysis model of mechanically linked aircraft double-walls
Sound transmission loss (TL) through mechanically linked aircraft double-walls is studied with a statistical energy analysis method. An overview of the method is given with details on acoustic and structural transfer path analysis. The studied structure is composed of a thick composite sandwich panel representative of a skin panel, lined with an acoustic insulation layer (glass wool), and structurally connected via vibration isolators to a thin composite sandwich lining panel representative of a trim panel. Two types of vibration isolators are considered: a soft and rigid mechanical link. Various experimental methods were used to assess the accuracy of this model. This study shows the robustness of the simple four-pole modeling of isolators, which depends mainly on the importance of correctly determining the experimental dynamic stiffness of typical aircraft vibration isolators. The prediction of the TL while acceptable was, however, found less satisfactory for the soft configuration. This is traced to the uncertainties on the used coupling loss factor. Finally, a transfer path analysis is performed to identify the contribution of each transmission path in the entire frequency range of interest. Results show that non-resonant airborne transmission dominates in low frequencies, the airborne radiation is significant in the critical frequency region of the panels, while the structure-borne radiation increases the noise transmitted in the mid- and high-frequency ranges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Noise Control Engineering Journal
Noise Control Engineering Journal 工程技术-工程:综合
CiteScore
0.90
自引率
25.00%
发文量
37
审稿时长
3 months
期刊介绍: NCEJ is the pre-eminent academic journal of noise control. It is the International Journal of the Institute of Noise Control Engineering of the USA. It is also produced with the participation and assistance of the Korean Society of Noise and Vibration Engineering (KSNVE). NCEJ reaches noise control professionals around the world, covering over 50 national noise control societies and institutes. INCE encourages you to submit your next paper to NCEJ. Choosing NCEJ: Provides the opportunity to reach a global audience of NCE professionals, academics, and students; Enhances the prestige of your work; Validates your work by formal peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信