基于分散注意残差网络的红外与可见光图像融合算法

Q3 Engineering
Kun Qian, T. Li, Zhe Li, Meishan Chen
{"title":"基于分散注意残差网络的红外与可见光图像融合算法","authors":"Kun Qian, T. Li, Zhe Li, Meishan Chen","doi":"10.1051/jnwpu/20224061404","DOIUrl":null,"url":null,"abstract":"在红外和可见光图像融合算法中, 图像信息的丢失始终是制约融合图像质量提升的关键问题, 为此, 提出了一种基于拆分注意力残差网络的红外和可见光图像融合算法, 使用带有拆分注意力模块的深层残差网络拓展感受野和提高跨通道信息融合能力, 运用平滑最大值单元函数作为激活函数进一步提升网络性能; 特征提取后运用零相位分量分析和归一化算法得到融合权重后完成图像融合。实验结果表明, 融合后的图像细节丰富, 边缘锐利; 在峰值信噪比、结构相似性指数度量和基于梯度的融合性能等指标上与经典的6种算法相比均有不同程度提升。","PeriodicalId":39691,"journal":{"name":"西北工业大学学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infrared and visible image fusion algorithm based on split-attention residual networks\",\"authors\":\"Kun Qian, T. Li, Zhe Li, Meishan Chen\",\"doi\":\"10.1051/jnwpu/20224061404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"在红外和可见光图像融合算法中, 图像信息的丢失始终是制约融合图像质量提升的关键问题, 为此, 提出了一种基于拆分注意力残差网络的红外和可见光图像融合算法, 使用带有拆分注意力模块的深层残差网络拓展感受野和提高跨通道信息融合能力, 运用平滑最大值单元函数作为激活函数进一步提升网络性能; 特征提取后运用零相位分量分析和归一化算法得到融合权重后完成图像融合。实验结果表明, 融合后的图像细节丰富, 边缘锐利; 在峰值信噪比、结构相似性指数度量和基于梯度的融合性能等指标上与经典的6种算法相比均有不同程度提升。\",\"PeriodicalId\":39691,\"journal\":{\"name\":\"西北工业大学学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"西北工业大学学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1051/jnwpu/20224061404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"西北工业大学学报","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/jnwpu/20224061404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

In infrared and visible light image fusion algorithms, the loss of image information is always a key issue that restricts the improvement of fusion image quality. Therefore, a infrared and visible light image fusion algorithm based on split attention residual network is proposed, which uses a deep residual network with split attention module to expand receptive field and improve cross channel information fusion ability, Using smooth maximum unit functions as activation functions to further improve network performance; After feature extraction, zero phase component analysis and normalization algorithm are used to obtain fusion weights and complete image fusion. The experimental results show that the fused image has rich details and sharp edges; Compared with the classic six algorithms, it has improved to varying degrees in indicators such as peak signal-to-noise ratio, structural similarity index measurement, and gradient based fusion performance.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infrared and visible image fusion algorithm based on split-attention residual networks
在红外和可见光图像融合算法中, 图像信息的丢失始终是制约融合图像质量提升的关键问题, 为此, 提出了一种基于拆分注意力残差网络的红外和可见光图像融合算法, 使用带有拆分注意力模块的深层残差网络拓展感受野和提高跨通道信息融合能力, 运用平滑最大值单元函数作为激活函数进一步提升网络性能; 特征提取后运用零相位分量分析和归一化算法得到融合权重后完成图像融合。实验结果表明, 融合后的图像细节丰富, 边缘锐利; 在峰值信噪比、结构相似性指数度量和基于梯度的融合性能等指标上与经典的6种算法相比均有不同程度提升。
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
西北工业大学学报
西北工业大学学报 Engineering-Engineering (all)
CiteScore
1.30
自引率
0.00%
发文量
6201
审稿时长
12 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信