拟树图和拟森林图中极大独立集的个数

Jenq-Jong Lin, Min-Jen Jou
{"title":"拟树图和拟森林图中极大独立集的个数","authors":"Jenq-Jong Lin, Min-Jen Jou","doi":"10.4236/OJDM.2017.73013","DOIUrl":null,"url":null,"abstract":"A maximal independent set is an independent set that is not a proper subset of any other independent set. A connected graph (respectively, graph) G with vertex set V(G) is called a quasi-tree graph (respectively, quasi-forest graph), if there exists a vertex x ∈V(G) such that G − x is a tree (respectively, forest). In this paper, we survey on the large numbers of maximal independent sets among all trees, forests, quasi-trees and quasi-forests. In addition, we further look into the problem of determining the third largest number of maximal independent sets among all quasi-trees and quasi-forests. Extremal graphs achieving these values are also given.","PeriodicalId":61712,"journal":{"name":"离散数学期刊(英文)","volume":"07 1","pages":"134-147"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Number of Maximal Independent Sets in Quasi-Tree Graphs and Quasi-Forest Graphs\",\"authors\":\"Jenq-Jong Lin, Min-Jen Jou\",\"doi\":\"10.4236/OJDM.2017.73013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A maximal independent set is an independent set that is not a proper subset of any other independent set. A connected graph (respectively, graph) G with vertex set V(G) is called a quasi-tree graph (respectively, quasi-forest graph), if there exists a vertex x ∈V(G) such that G − x is a tree (respectively, forest). In this paper, we survey on the large numbers of maximal independent sets among all trees, forests, quasi-trees and quasi-forests. In addition, we further look into the problem of determining the third largest number of maximal independent sets among all quasi-trees and quasi-forests. Extremal graphs achieving these values are also given.\",\"PeriodicalId\":61712,\"journal\":{\"name\":\"离散数学期刊(英文)\",\"volume\":\"07 1\",\"pages\":\"134-147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"离散数学期刊(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/OJDM.2017.73013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"离散数学期刊(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/OJDM.2017.73013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

极大独立集是一个独立集,它不是任何其他独立集的适当子集。具有顶点集V(G)的连通图(分别是图)G称为拟树图(分别为拟森林图),如果存在一个顶点x∈V(G)使得G−x是树(分别为森林)。在本文中,我们考察了所有树、森林、拟树和拟森林之间的大量极大独立集。此外,我们还进一步研究了在所有拟树和拟林中确定第三大数量的最大独立集的问题。还给出了实现这些值的极值图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Number of Maximal Independent Sets in Quasi-Tree Graphs and Quasi-Forest Graphs
A maximal independent set is an independent set that is not a proper subset of any other independent set. A connected graph (respectively, graph) G with vertex set V(G) is called a quasi-tree graph (respectively, quasi-forest graph), if there exists a vertex x ∈V(G) such that G − x is a tree (respectively, forest). In this paper, we survey on the large numbers of maximal independent sets among all trees, forests, quasi-trees and quasi-forests. In addition, we further look into the problem of determining the third largest number of maximal independent sets among all quasi-trees and quasi-forests. Extremal graphs achieving these values are also given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
127
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信