$\mathbb H^2\times\mathbb R中常平均曲率曲面的Slab定理和半空间定理$

IF 1.3 2区 数学 Q1 MATHEMATICS
L. Hauswirth, Ana Menezes, Magdalena Rodríguez
{"title":"$\\mathbb H^2\\times\\mathbb R中常平均曲率曲面的Slab定理和半空间定理$","authors":"L. Hauswirth, Ana Menezes, Magdalena Rodríguez","doi":"10.4171/rmi/1372","DOIUrl":null,"url":null,"abstract":"We prove that a properly embedded annular end of a surface in H 2 × R with constant mean curvature 0 < H ≤ 12 can not be contained in any horizontal slab. Moreover, we show that a properly embedded surface with constant mean curvature 0 < H ≤ 12 contained in H 2 × [0 , + ∞ ) and with finite topology is necessarily a graph over a simply connected domain of H 2 . For the case H = 12 , the graph is entire. 2020 Mathematics Subject Classification: 53C30, 53A10.","PeriodicalId":49604,"journal":{"name":"Revista Matematica Iberoamericana","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slab theorem and halfspace theorem for constant mean curvature surfaces in $\\\\mathbb H^2\\\\times\\\\mathbb R$\",\"authors\":\"L. Hauswirth, Ana Menezes, Magdalena Rodríguez\",\"doi\":\"10.4171/rmi/1372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that a properly embedded annular end of a surface in H 2 × R with constant mean curvature 0 < H ≤ 12 can not be contained in any horizontal slab. Moreover, we show that a properly embedded surface with constant mean curvature 0 < H ≤ 12 contained in H 2 × [0 , + ∞ ) and with finite topology is necessarily a graph over a simply connected domain of H 2 . For the case H = 12 , the graph is entire. 2020 Mathematics Subject Classification: 53C30, 53A10.\",\"PeriodicalId\":49604,\"journal\":{\"name\":\"Revista Matematica Iberoamericana\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Matematica Iberoamericana\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/rmi/1372\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Matematica Iberoamericana","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rmi/1372","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在H2×R中,具有常平均曲率0本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Slab theorem and halfspace theorem for constant mean curvature surfaces in $\mathbb H^2\times\mathbb R$
We prove that a properly embedded annular end of a surface in H 2 × R with constant mean curvature 0 < H ≤ 12 can not be contained in any horizontal slab. Moreover, we show that a properly embedded surface with constant mean curvature 0 < H ≤ 12 contained in H 2 × [0 , + ∞ ) and with finite topology is necessarily a graph over a simply connected domain of H 2 . For the case H = 12 , the graph is entire. 2020 Mathematics Subject Classification: 53C30, 53A10.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Matematica Iberoamericana
CiteScore
2.40
自引率
0.00%
发文量
61
审稿时长
>12 weeks
期刊介绍: Revista Matemática Iberoamericana publishes original research articles on all areas of mathematics. Its distinguished Editorial Board selects papers according to the highest standards. Founded in 1985, Revista is a scientific journal of Real Sociedad Matemática Española.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
请完成安全验证×
微信好友 朋友圈 QQ好友 复制链接
取消
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信