具有模的零循环与相对K理论

IF 0.5 Q3 MATHEMATICS
Rahul Gupta, A. Krishna
{"title":"具有模的零循环与相对K理论","authors":"Rahul Gupta, A. Krishna","doi":"10.2140/akt.2020.5.757","DOIUrl":null,"url":null,"abstract":"We construct a cycle class map from the higher Chow groups of 0-cycles to the relative $K$-theory of a modulus pair. We show that this induces a pro-isomorphism between the additive higher Chow groups of relative 0-cycles and relative $K$-theory of truncated polynomial rings over a regular semi-local ring, essentially of finite type over a characteristic zero field.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Zero-cycles with modulus and relative\\nK-theory\",\"authors\":\"Rahul Gupta, A. Krishna\",\"doi\":\"10.2140/akt.2020.5.757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a cycle class map from the higher Chow groups of 0-cycles to the relative $K$-theory of a modulus pair. We show that this induces a pro-isomorphism between the additive higher Chow groups of relative 0-cycles and relative $K$-theory of truncated polynomial rings over a regular semi-local ring, essentially of finite type over a characteristic zero field.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2020.5.757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2020.5.757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

我们构造了一个从0-循环的高Chow群到模对的相对$K$-理论的循环类映射。我们证明了这在正则半局部环上的相对0-环的可加更高Chow群和截断多项式环的相对$K$-理论之间诱导了一个亲同构,该理论本质上是特征零域上的有限型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zero-cycles with modulus and relative K-theory
We construct a cycle class map from the higher Chow groups of 0-cycles to the relative $K$-theory of a modulus pair. We show that this induces a pro-isomorphism between the additive higher Chow groups of relative 0-cycles and relative $K$-theory of truncated polynomial rings over a regular semi-local ring, essentially of finite type over a characteristic zero field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信