红细胞建模的一种新的双组分方法

IF 0.3 Q4 MATHEMATICS
L. Meacci, G. Buscaglia, F. Mut, R. Ausas, M. Primicerio
{"title":"红细胞建模的一种新的双组分方法","authors":"L. Meacci, G. Buscaglia, F. Mut, R. Ausas, M. Primicerio","doi":"10.1515/caim-2020-0004","DOIUrl":null,"url":null,"abstract":"Abstract This work consists in the presentation of a computational modelling approach to study normal and pathological behavior of red blood cells in slow transient processes that can not be accompanied by pure particle methods (which require very small time steps). The basic model, inspired by the best models currently available, considers the cytoskeleton as a discrete non-linear elastic structure. The novelty of the proposed work is to couple this skeleton with continuum models instead of the more common discrete models (molecular dynamics, particle methods) of the lipid bilayer. The interaction of the solid cytoskeleton with the bilayer, which is a two-dimensional fluid, will be done through adhesion forces adapting e cient solid-solid adhesion algorithms. The continuous treatment of the fluid parts is well justified by scale arguments and leads to much more stable and precise numerical problems when, as is the case, the size of the molecules (0.3 nm) is much smaller than the overall size (≃ 8000 nm). In this paper we display some numerical simulations that show how our approach can describe the interaction of an RBC with an exogenous body as well as the relaxation of the shape of an RBC toward its equilibrium configuration in absence of external forces.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"11 1","pages":"55 - 71"},"PeriodicalIF":0.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new two-component approach in modeling red blood cells\",\"authors\":\"L. Meacci, G. Buscaglia, F. Mut, R. Ausas, M. Primicerio\",\"doi\":\"10.1515/caim-2020-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work consists in the presentation of a computational modelling approach to study normal and pathological behavior of red blood cells in slow transient processes that can not be accompanied by pure particle methods (which require very small time steps). The basic model, inspired by the best models currently available, considers the cytoskeleton as a discrete non-linear elastic structure. The novelty of the proposed work is to couple this skeleton with continuum models instead of the more common discrete models (molecular dynamics, particle methods) of the lipid bilayer. The interaction of the solid cytoskeleton with the bilayer, which is a two-dimensional fluid, will be done through adhesion forces adapting e cient solid-solid adhesion algorithms. The continuous treatment of the fluid parts is well justified by scale arguments and leads to much more stable and precise numerical problems when, as is the case, the size of the molecules (0.3 nm) is much smaller than the overall size (≃ 8000 nm). In this paper we display some numerical simulations that show how our approach can describe the interaction of an RBC with an exogenous body as well as the relaxation of the shape of an RBC toward its equilibrium configuration in absence of external forces.\",\"PeriodicalId\":37903,\"journal\":{\"name\":\"Communications in Applied and Industrial Mathematics\",\"volume\":\"11 1\",\"pages\":\"55 - 71\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/caim-2020-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/caim-2020-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要这项工作包括介绍一种计算建模方法,以研究红细胞在缓慢的瞬态过程中的正常和病理行为,而纯粒子方法(需要非常小的时间步长)是不可能的。受目前最佳模型的启发,基本模型将细胞骨架视为离散的非线性弹性结构。所提出的工作的新颖之处在于将该骨架与连续模型相结合,而不是更常见的脂质双层离散模型(分子动力学、粒子方法)。固体细胞骨架与双层(二维流体)的相互作用将通过适用于有效固体-固体粘附算法的粘附力来实现。当分子的尺寸(0.3nm)远小于总尺寸(-8000nm)时,流体部分的连续处理通过尺度论证是合理的,并导致更稳定和精确的数值问题。在本文中,我们展示了一些数值模拟,显示了我们的方法如何描述红细胞与外源体的相互作用,以及在没有外力的情况下红细胞向其平衡构型的形状松弛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new two-component approach in modeling red blood cells
Abstract This work consists in the presentation of a computational modelling approach to study normal and pathological behavior of red blood cells in slow transient processes that can not be accompanied by pure particle methods (which require very small time steps). The basic model, inspired by the best models currently available, considers the cytoskeleton as a discrete non-linear elastic structure. The novelty of the proposed work is to couple this skeleton with continuum models instead of the more common discrete models (molecular dynamics, particle methods) of the lipid bilayer. The interaction of the solid cytoskeleton with the bilayer, which is a two-dimensional fluid, will be done through adhesion forces adapting e cient solid-solid adhesion algorithms. The continuous treatment of the fluid parts is well justified by scale arguments and leads to much more stable and precise numerical problems when, as is the case, the size of the molecules (0.3 nm) is much smaller than the overall size (≃ 8000 nm). In this paper we display some numerical simulations that show how our approach can describe the interaction of an RBC with an exogenous body as well as the relaxation of the shape of an RBC toward its equilibrium configuration in absence of external forces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
3
审稿时长
16 weeks
期刊介绍: Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信