巴斯德酵母繁殖过程中氧化应激的定量:定量逆转录聚合酶链反应和流式细胞术的基因表达分析

IF 2.5 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
A. Beugholt, K. Büchner, D. Geier, T. Becker
{"title":"巴斯德酵母繁殖过程中氧化应激的定量:定量逆转录聚合酶链反应和流式细胞术的基因表达分析","authors":"A. Beugholt, K. Büchner, D. Geier, T. Becker","doi":"10.3389/fceng.2022.1035348","DOIUrl":null,"url":null,"abstract":"When confronted with environmental stress, yeast cell reacts, among others, by modifying the expression of specific genes. In this study, gene expression was analyzed via RT-qPCR to quantify the oxidative stress of Saccharomyces pastorianus during yeast propagation as a reaction to different aeration levels. Target genes were identified, and a reference gene system was developed. Fermentation experiments were conducted in shaking flasks, applying different shaking speeds to generate various aeration efficiencies. The cells were sampled at different propagation stages and, additionally to the expression study, analyzed by flow cytometry after staining with dihydroethidium (DHE) to quantify reactive oxygen species (ROS) inside the cells. The results indicate that high oxygen fermentation conditions led to an increased expression of the catalase-A gene CTA1 during propagation. Furthermore, the determination of cell internal ROS shows increasing oxidative stress over the process in accordance with the RT-qPCR measurements.","PeriodicalId":73073,"journal":{"name":"Frontiers in chemical engineering","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantification of oxidative stress in Saccharomyces pastorianus propagation: Gene expression analysis using quantitative reverse transcription polymerase chain reaction and flow cytometry\",\"authors\":\"A. Beugholt, K. Büchner, D. Geier, T. Becker\",\"doi\":\"10.3389/fceng.2022.1035348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When confronted with environmental stress, yeast cell reacts, among others, by modifying the expression of specific genes. In this study, gene expression was analyzed via RT-qPCR to quantify the oxidative stress of Saccharomyces pastorianus during yeast propagation as a reaction to different aeration levels. Target genes were identified, and a reference gene system was developed. Fermentation experiments were conducted in shaking flasks, applying different shaking speeds to generate various aeration efficiencies. The cells were sampled at different propagation stages and, additionally to the expression study, analyzed by flow cytometry after staining with dihydroethidium (DHE) to quantify reactive oxygen species (ROS) inside the cells. The results indicate that high oxygen fermentation conditions led to an increased expression of the catalase-A gene CTA1 during propagation. Furthermore, the determination of cell internal ROS shows increasing oxidative stress over the process in accordance with the RT-qPCR measurements.\",\"PeriodicalId\":73073,\"journal\":{\"name\":\"Frontiers in chemical engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in chemical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fceng.2022.1035348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in chemical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fceng.2022.1035348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

当面临环境压力时,酵母细胞会通过改变特定基因的表达等方式做出反应。在本研究中,通过RT-qPCR分析基因表达,以量化酵母繁殖过程中对不同通气水平的氧化应激反应。确定了靶基因,并建立了参考基因系统。在摇瓶中进行发酵实验,施加不同的摇速以产生不同的曝气效率。在不同的繁殖阶段对细胞进行取样,除表达研究外,在用二氢乙锭(DHE)染色后通过流式细胞术进行分析,以量化细胞内的活性氧(ROS)。结果表明,在高氧发酵条件下,催化A基因CTA1在繁殖过程中的表达增加。此外,根据RT-qPCR测量,细胞内部ROS的测定显示在整个过程中氧化应激增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantification of oxidative stress in Saccharomyces pastorianus propagation: Gene expression analysis using quantitative reverse transcription polymerase chain reaction and flow cytometry
When confronted with environmental stress, yeast cell reacts, among others, by modifying the expression of specific genes. In this study, gene expression was analyzed via RT-qPCR to quantify the oxidative stress of Saccharomyces pastorianus during yeast propagation as a reaction to different aeration levels. Target genes were identified, and a reference gene system was developed. Fermentation experiments were conducted in shaking flasks, applying different shaking speeds to generate various aeration efficiencies. The cells were sampled at different propagation stages and, additionally to the expression study, analyzed by flow cytometry after staining with dihydroethidium (DHE) to quantify reactive oxygen species (ROS) inside the cells. The results indicate that high oxygen fermentation conditions led to an increased expression of the catalase-A gene CTA1 during propagation. Furthermore, the determination of cell internal ROS shows increasing oxidative stress over the process in accordance with the RT-qPCR measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信