具有多因素结构的大型异质面板的工具变量估计

Q3 Mathematics
G. Forchini, Bin Jiang, B. Peng
{"title":"具有多因素结构的大型异质面板的工具变量估计","authors":"G. Forchini, Bin Jiang, B. Peng","doi":"10.1515/jem-2018-0003","DOIUrl":null,"url":null,"abstract":"Abstract The paper proposes new instrumental variables estimators for the slope parameters of a panel data model with classical endogeneity in which all the observables – including the instruments – may have a common factors structure. These estimators are shown to be consistent and asymptotically normal under weak regularity conditions. A small Monte Carlo simulation shows that these estimators compare favourably to existing estimators.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jem-2018-0003","citationCount":"0","resultStr":"{\"title\":\"Instrumental Variables Estimation in Large Heterogeneous Panels with Multifactor Structure\",\"authors\":\"G. Forchini, Bin Jiang, B. Peng\",\"doi\":\"10.1515/jem-2018-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper proposes new instrumental variables estimators for the slope parameters of a panel data model with classical endogeneity in which all the observables – including the instruments – may have a common factors structure. These estimators are shown to be consistent and asymptotically normal under weak regularity conditions. A small Monte Carlo simulation shows that these estimators compare favourably to existing estimators.\",\"PeriodicalId\":36727,\"journal\":{\"name\":\"Journal of Econometric Methods\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/jem-2018-0003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometric Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jem-2018-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2018-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文提出了一种新的工具变量估计方法,用于具有经典内生性的面板数据模型的斜率参数,其中所有可观测值(包括工具)可能具有共同的因子结构。在弱正则性条件下,这些估计量是相合的和渐近正态的。一个小型蒙特卡罗模拟表明,这些估计比现有的估计更有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instrumental Variables Estimation in Large Heterogeneous Panels with Multifactor Structure
Abstract The paper proposes new instrumental variables estimators for the slope parameters of a panel data model with classical endogeneity in which all the observables – including the instruments – may have a common factors structure. These estimators are shown to be consistent and asymptotically normal under weak regularity conditions. A small Monte Carlo simulation shows that these estimators compare favourably to existing estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信