{"title":"具有多因素结构的大型异质面板的工具变量估计","authors":"G. Forchini, Bin Jiang, B. Peng","doi":"10.1515/jem-2018-0003","DOIUrl":null,"url":null,"abstract":"Abstract The paper proposes new instrumental variables estimators for the slope parameters of a panel data model with classical endogeneity in which all the observables – including the instruments – may have a common factors structure. These estimators are shown to be consistent and asymptotically normal under weak regularity conditions. A small Monte Carlo simulation shows that these estimators compare favourably to existing estimators.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jem-2018-0003","citationCount":"0","resultStr":"{\"title\":\"Instrumental Variables Estimation in Large Heterogeneous Panels with Multifactor Structure\",\"authors\":\"G. Forchini, Bin Jiang, B. Peng\",\"doi\":\"10.1515/jem-2018-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper proposes new instrumental variables estimators for the slope parameters of a panel data model with classical endogeneity in which all the observables – including the instruments – may have a common factors structure. These estimators are shown to be consistent and asymptotically normal under weak regularity conditions. A small Monte Carlo simulation shows that these estimators compare favourably to existing estimators.\",\"PeriodicalId\":36727,\"journal\":{\"name\":\"Journal of Econometric Methods\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/jem-2018-0003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometric Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jem-2018-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2018-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Instrumental Variables Estimation in Large Heterogeneous Panels with Multifactor Structure
Abstract The paper proposes new instrumental variables estimators for the slope parameters of a panel data model with classical endogeneity in which all the observables – including the instruments – may have a common factors structure. These estimators are shown to be consistent and asymptotically normal under weak regularity conditions. A small Monte Carlo simulation shows that these estimators compare favourably to existing estimators.