{"title":"存在源和汇的二维不可压缩Euler方程弱解的存在性","authors":"M. Bravin, F. Sueur","doi":"10.57262/ade027-1112-683","DOIUrl":null,"url":null,"abstract":"A classical model for sources and sinks in a two-dimensional perfect incompressible fluid occupying a bounded domain dates back to Yudovich’s paper [44] in 1966. In this model, on the one hand, the normal component of the fluid velocity is prescribed on the boundary and is nonzero on an open subset of the boundary, corresponding either to sources (where the flow is incoming) or to sinks (where the flow is outgoing). On the other hand the vorticity of the fluid which is entering into the domain from the sources is prescribed. In this paper we investigate the existence of weak solutions to this system by relying on a priori bounds of the vorticity, which satisfies a transport equation associated with the fluid velocity vector field. Our results cover the case where the vorticity has a Lp integrability in space, with p in [1,+∞], and prove the existence of solutions obtained by compactness methods from viscous approximations. More precisely we prove the existence of solutions which satisfy the vorticity equation in the distributional sense in the case where p > 4 3 , in the renormalized sense in the case where p > 1, and in a symmetrized sense in the case where p = 1.","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Existence of weak solutions to the two-dimensional incompressible Euler equations in the presence of sources and sinks\",\"authors\":\"M. Bravin, F. Sueur\",\"doi\":\"10.57262/ade027-1112-683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A classical model for sources and sinks in a two-dimensional perfect incompressible fluid occupying a bounded domain dates back to Yudovich’s paper [44] in 1966. In this model, on the one hand, the normal component of the fluid velocity is prescribed on the boundary and is nonzero on an open subset of the boundary, corresponding either to sources (where the flow is incoming) or to sinks (where the flow is outgoing). On the other hand the vorticity of the fluid which is entering into the domain from the sources is prescribed. In this paper we investigate the existence of weak solutions to this system by relying on a priori bounds of the vorticity, which satisfies a transport equation associated with the fluid velocity vector field. Our results cover the case where the vorticity has a Lp integrability in space, with p in [1,+∞], and prove the existence of solutions obtained by compactness methods from viscous approximations. More precisely we prove the existence of solutions which satisfy the vorticity equation in the distributional sense in the case where p > 4 3 , in the renormalized sense in the case where p > 1, and in a symmetrized sense in the case where p = 1.\",\"PeriodicalId\":53312,\"journal\":{\"name\":\"Advances in Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/ade027-1112-683\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade027-1112-683","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Existence of weak solutions to the two-dimensional incompressible Euler equations in the presence of sources and sinks
A classical model for sources and sinks in a two-dimensional perfect incompressible fluid occupying a bounded domain dates back to Yudovich’s paper [44] in 1966. In this model, on the one hand, the normal component of the fluid velocity is prescribed on the boundary and is nonzero on an open subset of the boundary, corresponding either to sources (where the flow is incoming) or to sinks (where the flow is outgoing). On the other hand the vorticity of the fluid which is entering into the domain from the sources is prescribed. In this paper we investigate the existence of weak solutions to this system by relying on a priori bounds of the vorticity, which satisfies a transport equation associated with the fluid velocity vector field. Our results cover the case where the vorticity has a Lp integrability in space, with p in [1,+∞], and prove the existence of solutions obtained by compactness methods from viscous approximations. More precisely we prove the existence of solutions which satisfy the vorticity equation in the distributional sense in the case where p > 4 3 , in the renormalized sense in the case where p > 1, and in a symmetrized sense in the case where p = 1.
期刊介绍:
Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.