{"title":"分歧与决策P值:一个值得在理论和实践中做出的区分;或者,分歧P值如何衡量证据,即使决策P值没有","authors":"S. Greenland","doi":"10.1111/sjos.12625","DOIUrl":null,"url":null,"abstract":"There are two distinct definitions of “P‐value” for evaluating a proposed hypothesis or model for the process generating an observed dataset. The original definition starts with a measure of the divergence of the dataset from what was expected under the model, such as a sum of squares or a deviance statistic. A P‐value is then the ordinal location of the measure in a reference distribution computed from the model and the data, and is treated as a unit‐scaled index of compatibility between the data and the model. In the other definition, a P‐value is a random variable on the unit interval whose realizations can be compared to a cutoff α to generate a decision rule with known error rates under the model and specific alternatives. It is commonly assumed that realizations of such decision P‐values always correspond to divergence P‐values. But this need not be so: Decision P‐values can violate intuitive single‐sample coherence criteria where divergence P‐values do not. It is thus argued that divergence and decision P‐values should be carefully distinguished in teaching, and that divergence P‐values are the relevant choice when the analysis goal is to summarize evidence rather than implement a decision rule.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":"50 1","pages":"54 - 88"},"PeriodicalIF":0.8000,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Divergence versus decision P‐values: A distinction worth making in theory and keeping in practice: Or, how divergence P‐values measure evidence even when decision P‐values do not\",\"authors\":\"S. Greenland\",\"doi\":\"10.1111/sjos.12625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are two distinct definitions of “P‐value” for evaluating a proposed hypothesis or model for the process generating an observed dataset. The original definition starts with a measure of the divergence of the dataset from what was expected under the model, such as a sum of squares or a deviance statistic. A P‐value is then the ordinal location of the measure in a reference distribution computed from the model and the data, and is treated as a unit‐scaled index of compatibility between the data and the model. In the other definition, a P‐value is a random variable on the unit interval whose realizations can be compared to a cutoff α to generate a decision rule with known error rates under the model and specific alternatives. It is commonly assumed that realizations of such decision P‐values always correspond to divergence P‐values. But this need not be so: Decision P‐values can violate intuitive single‐sample coherence criteria where divergence P‐values do not. It is thus argued that divergence and decision P‐values should be carefully distinguished in teaching, and that divergence P‐values are the relevant choice when the analysis goal is to summarize evidence rather than implement a decision rule.\",\"PeriodicalId\":49567,\"journal\":{\"name\":\"Scandinavian Journal of Statistics\",\"volume\":\"50 1\",\"pages\":\"54 - 88\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/sjos.12625\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12625","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Divergence versus decision P‐values: A distinction worth making in theory and keeping in practice: Or, how divergence P‐values measure evidence even when decision P‐values do not
There are two distinct definitions of “P‐value” for evaluating a proposed hypothesis or model for the process generating an observed dataset. The original definition starts with a measure of the divergence of the dataset from what was expected under the model, such as a sum of squares or a deviance statistic. A P‐value is then the ordinal location of the measure in a reference distribution computed from the model and the data, and is treated as a unit‐scaled index of compatibility between the data and the model. In the other definition, a P‐value is a random variable on the unit interval whose realizations can be compared to a cutoff α to generate a decision rule with known error rates under the model and specific alternatives. It is commonly assumed that realizations of such decision P‐values always correspond to divergence P‐values. But this need not be so: Decision P‐values can violate intuitive single‐sample coherence criteria where divergence P‐values do not. It is thus argued that divergence and decision P‐values should be carefully distinguished in teaching, and that divergence P‐values are the relevant choice when the analysis goal is to summarize evidence rather than implement a decision rule.
期刊介绍:
The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia.
It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications.
The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems.
The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.