{"title":"关于稀疏矩形随机矩阵的最大和最小奇异值","authors":"F. Gotze, A. Tikhomirov","doi":"10.1214/23-ejp919","DOIUrl":null,"url":null,"abstract":"We derive estimates for the largest and smallest singular values of sparse rectangular $N\\times n$ random matrices, assuming $\\lim_{N,n\\to\\infty}\\frac nN=y\\in(0,1)$. We consider a model with sparsity parameter $p_N$ such that $Np_N\\sim \\log^{\\alpha }N$ for some $\\alpha>1$, and assume that the moments of the matrix elements satisfy the condition $\\mathbf E|X_{jk}|^{4+\\delta}\\le C<\\infty$. We assume also that the entries of matrices we consider are truncated at the level $(Np_N)^{\\frac12-\\varkappa}$ with $\\varkappa:=\\frac{\\delta}{2(4+\\delta)}$.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the largest and the smallest singular value of sparse rectangular random matrices\",\"authors\":\"F. Gotze, A. Tikhomirov\",\"doi\":\"10.1214/23-ejp919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive estimates for the largest and smallest singular values of sparse rectangular $N\\\\times n$ random matrices, assuming $\\\\lim_{N,n\\\\to\\\\infty}\\\\frac nN=y\\\\in(0,1)$. We consider a model with sparsity parameter $p_N$ such that $Np_N\\\\sim \\\\log^{\\\\alpha }N$ for some $\\\\alpha>1$, and assume that the moments of the matrix elements satisfy the condition $\\\\mathbf E|X_{jk}|^{4+\\\\delta}\\\\le C<\\\\infty$. We assume also that the entries of matrices we consider are truncated at the level $(Np_N)^{\\\\frac12-\\\\varkappa}$ with $\\\\varkappa:=\\\\frac{\\\\delta}{2(4+\\\\delta)}$.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejp919\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ejp919","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
On the largest and the smallest singular value of sparse rectangular random matrices
We derive estimates for the largest and smallest singular values of sparse rectangular $N\times n$ random matrices, assuming $\lim_{N,n\to\infty}\frac nN=y\in(0,1)$. We consider a model with sparsity parameter $p_N$ such that $Np_N\sim \log^{\alpha }N$ for some $\alpha>1$, and assume that the moments of the matrix elements satisfy the condition $\mathbf E|X_{jk}|^{4+\delta}\le C<\infty$. We assume also that the entries of matrices we consider are truncated at the level $(Np_N)^{\frac12-\varkappa}$ with $\varkappa:=\frac{\delta}{2(4+\delta)}$.
期刊介绍:
The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory.
Both ECP and EJP are official journals of the Institute of Mathematical Statistics
and the Bernoulli society.