具有季节结构的一阶随机系数整数自回归模型(RCINAR(1)s)

Q4 Mathematics
Manik Awale, A. Kashikar
{"title":"具有季节结构的一阶随机系数整数自回归模型(RCINAR(1)s)","authors":"Manik Awale, A. Kashikar","doi":"10.3233/mas-211333","DOIUrl":null,"url":null,"abstract":"Seasonality is an inherent part of most of the epidemic data. The fixed coefficient INAR(1) models with seasonal structure have been studied by many authors. The varying immunity and susceptibility affect the chances of catching or escaping an infection. This brings in the randomness in the phenomenon of the spread of the diseases. The fixed coefficient INAR models assume that the chance of infection remains the same for every individual, which is not true practically and hence one needs to study the disease spread phenomenon using random coefficient INAR models. The parameters of the proposed model have been estimated using quasi maximum likelihood estimation. Various probabilistic and inferential properties of the model have been studied. A simulation study has been carried out for parameter estimation. Two data sets having seasonal structures have been analyzed using the model. The model fits well to the data sets compared to the existing models.","PeriodicalId":35000,"journal":{"name":"Model Assisted Statistics and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A random coefficient integer autoregressive model of order one with seasonal structure (RCINAR(1)s)\",\"authors\":\"Manik Awale, A. Kashikar\",\"doi\":\"10.3233/mas-211333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seasonality is an inherent part of most of the epidemic data. The fixed coefficient INAR(1) models with seasonal structure have been studied by many authors. The varying immunity and susceptibility affect the chances of catching or escaping an infection. This brings in the randomness in the phenomenon of the spread of the diseases. The fixed coefficient INAR models assume that the chance of infection remains the same for every individual, which is not true practically and hence one needs to study the disease spread phenomenon using random coefficient INAR models. The parameters of the proposed model have been estimated using quasi maximum likelihood estimation. Various probabilistic and inferential properties of the model have been studied. A simulation study has been carried out for parameter estimation. Two data sets having seasonal structures have been analyzed using the model. The model fits well to the data sets compared to the existing models.\",\"PeriodicalId\":35000,\"journal\":{\"name\":\"Model Assisted Statistics and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Model Assisted Statistics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/mas-211333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Assisted Statistics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mas-211333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

季节性是大多数流行病数据的固有部分。许多作者研究了具有季节结构的固定系数INAR(1)模型。不同的免疫力和易感性会影响感染或逃避感染的机会。这带来了疾病传播现象的随机性。固定系数INAR模型假设每个人的感染机会都是相同的,这在实践中是不正确的,因此需要使用随机系数INAR模式来研究疾病传播现象。所提出的模型的参数已经使用准最大似然估计进行了估计。已经研究了该模型的各种概率和推理性质。对参数估计进行了仿真研究。使用该模型对具有季节结构的两个数据集进行了分析。与现有模型相比,该模型非常适合数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A random coefficient integer autoregressive model of order one with seasonal structure (RCINAR(1)s)
Seasonality is an inherent part of most of the epidemic data. The fixed coefficient INAR(1) models with seasonal structure have been studied by many authors. The varying immunity and susceptibility affect the chances of catching or escaping an infection. This brings in the randomness in the phenomenon of the spread of the diseases. The fixed coefficient INAR models assume that the chance of infection remains the same for every individual, which is not true practically and hence one needs to study the disease spread phenomenon using random coefficient INAR models. The parameters of the proposed model have been estimated using quasi maximum likelihood estimation. Various probabilistic and inferential properties of the model have been studied. A simulation study has been carried out for parameter estimation. Two data sets having seasonal structures have been analyzed using the model. The model fits well to the data sets compared to the existing models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Model Assisted Statistics and Applications
Model Assisted Statistics and Applications Mathematics-Applied Mathematics
CiteScore
1.00
自引率
0.00%
发文量
26
期刊介绍: Model Assisted Statistics and Applications is a peer reviewed international journal. Model Assisted Statistics means an improvement of inference and analysis by use of correlated information, or an underlying theoretical or design model. This might be the design, adjustment, estimation, or analytical phase of statistical project. This information may be survey generated or coming from an independent source. Original papers in the field of sampling theory, econometrics, time-series, design of experiments, and multivariate analysis will be preferred. Papers of both applied and theoretical topics are acceptable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信