S. Yabsantia, S. Suriyapee, N. Phaisangittisakul, S. Oonsiri, T. Sanghangthum, J. Seuntjens
{"title":"使用IAEA-AAPM TRS-483实践规范建议和蒙特卡罗模拟对6 MV光子光束的现场输出因素进行调查","authors":"S. Yabsantia, S. Suriyapee, N. Phaisangittisakul, S. Oonsiri, T. Sanghangthum, J. Seuntjens","doi":"10.1017/S1460396921000662","DOIUrl":null,"url":null,"abstract":"Abstract Introduction: This study aims to experimentally determine field output factors using the methodologies suggested by the IAEA-AAPM TRS-483 for small field dosimetry and compare with the calculation from Monte Carlo (MC) simulation. Methods: The IBA-CC01, Sun Nuclear EDGE and IBA-SFD detectors were employed to determine the uncorrected and the corrected field output factors for 6 MV photon beams. Measurements were performed at 100 cm source to axis distance, 10 cm depth in water, and the field sizes ranged from 1 × 1 to 10 × 10 cm2. The use of field output correction factors proposed by the TRS-483 was utilised to determine field output factors. The measured field output factors were compared to that calculated using the egs_chamber user code. Results: The decrease in the percentage standard deviation of the measured three detectors was observed after applying the field output correction factors. Measured field output factors using CC01 and EDGE detectors agreed with MC values within 3% for field sizes down to 1 × 1 cm2, except the SFD detector. Conclusions: The corrected field output factors agree with the calculation from MC, except the SFD detector. CC01 and EDGE are suitable for determining field output factors, while the SFD may need more implementation of the intermediate field method.","PeriodicalId":44597,"journal":{"name":"Journal of Radiotherapy in Practice","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of field output factors using IAEA-AAPM TRS-483 code of practice recommendations and Monte Carlo simulation for 6 MV photon beams\",\"authors\":\"S. Yabsantia, S. Suriyapee, N. Phaisangittisakul, S. Oonsiri, T. Sanghangthum, J. Seuntjens\",\"doi\":\"10.1017/S1460396921000662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Introduction: This study aims to experimentally determine field output factors using the methodologies suggested by the IAEA-AAPM TRS-483 for small field dosimetry and compare with the calculation from Monte Carlo (MC) simulation. Methods: The IBA-CC01, Sun Nuclear EDGE and IBA-SFD detectors were employed to determine the uncorrected and the corrected field output factors for 6 MV photon beams. Measurements were performed at 100 cm source to axis distance, 10 cm depth in water, and the field sizes ranged from 1 × 1 to 10 × 10 cm2. The use of field output correction factors proposed by the TRS-483 was utilised to determine field output factors. The measured field output factors were compared to that calculated using the egs_chamber user code. Results: The decrease in the percentage standard deviation of the measured three detectors was observed after applying the field output correction factors. Measured field output factors using CC01 and EDGE detectors agreed with MC values within 3% for field sizes down to 1 × 1 cm2, except the SFD detector. Conclusions: The corrected field output factors agree with the calculation from MC, except the SFD detector. CC01 and EDGE are suitable for determining field output factors, while the SFD may need more implementation of the intermediate field method.\",\"PeriodicalId\":44597,\"journal\":{\"name\":\"Journal of Radiotherapy in Practice\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radiotherapy in Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S1460396921000662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiotherapy in Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S1460396921000662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Investigation of field output factors using IAEA-AAPM TRS-483 code of practice recommendations and Monte Carlo simulation for 6 MV photon beams
Abstract Introduction: This study aims to experimentally determine field output factors using the methodologies suggested by the IAEA-AAPM TRS-483 for small field dosimetry and compare with the calculation from Monte Carlo (MC) simulation. Methods: The IBA-CC01, Sun Nuclear EDGE and IBA-SFD detectors were employed to determine the uncorrected and the corrected field output factors for 6 MV photon beams. Measurements were performed at 100 cm source to axis distance, 10 cm depth in water, and the field sizes ranged from 1 × 1 to 10 × 10 cm2. The use of field output correction factors proposed by the TRS-483 was utilised to determine field output factors. The measured field output factors were compared to that calculated using the egs_chamber user code. Results: The decrease in the percentage standard deviation of the measured three detectors was observed after applying the field output correction factors. Measured field output factors using CC01 and EDGE detectors agreed with MC values within 3% for field sizes down to 1 × 1 cm2, except the SFD detector. Conclusions: The corrected field output factors agree with the calculation from MC, except the SFD detector. CC01 and EDGE are suitable for determining field output factors, while the SFD may need more implementation of the intermediate field method.
期刊介绍:
Journal of Radiotherapy in Practice is a peer-reviewed journal covering all of the current modalities specific to clinical oncology and radiotherapy. The journal aims to publish research from a wide range of styles and encourage debate and the exchange of information and opinion from within the field of radiotherapy practice and clinical oncology. The journal also aims to encourage technical evaluations and case studies as well as equipment reviews that will be of interest to an international radiotherapy audience.