使用膨润土、沸石和珍珠岩从水溶液中吸附去除稳定和放射性Pb(II)同位素:表征、等温线和热力学研究

IF 1.1 4区 地球科学 Q4 CHEMISTRY, PHYSICAL
Clay Minerals Pub Date : 2023-08-17 DOI:10.1180/clm.2023.18
Osman Uygun, R. Güven, Gaye Ö. Çakal
{"title":"使用膨润土、沸石和珍珠岩从水溶液中吸附去除稳定和放射性Pb(II)同位素:表征、等温线和热力学研究","authors":"Osman Uygun, R. Güven, Gaye Ö. Çakal","doi":"10.1180/clm.2023.18","DOIUrl":null,"url":null,"abstract":"In this study, stable and radioactive lead removal from aqueous solution by adsorption using bentonite, zeolite and perlite minerals obtained from various locations in Türkiye was studied in batch experiments. The adsorbents were first characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), and then the physicochemical properties were determined. The effects of various factors that influence adsorption, such as solution pH, adsorbent dosage, contact time, initial Pb2+ ion concentration, temperature and shaking rate, were studied. The adsorption of Pb2+ was modelled using the Langmuir, Freundlich and Dubinin–Radushkevich isotherms. The adsorption capacities of the minerals for Pb2+ followed the order: bentonite > zeolite > perlite, and the maximum adsorption capacities were 131.6, 36.1 and 21.5 mg g–1, respectively. The adsorption data fit well with the Langmuir isotherm. The bonding of lead ions on the adsorbents was confirmed by XRF and FTIR analyses after the adsorption process. The adsorption of Pb2+ ions on the adsorbents was spontaneous and endothermic. The adsorption process took place by cation exchange in addition to electrostatic interaction. Furthermore, radioactive 210Pb2+ adsorption on bentonite, zeolite and perlite was studied, with the analyte being analysed using a liquid scintillation counter. It was seen that in addition to Pb(II) ions, these minerals also adsorbed the radioactive decay products of 210Pb, which were 210Po and 210Bi. The removal percentages of 210Pb were 95%, 38% and 30% and those of 210Po were 75%, 60% and 74% for bentonite, zeolite and perlite, respectively.","PeriodicalId":10311,"journal":{"name":"Clay Minerals","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adsorptive removal of stable and radioactive Pb(II) isotopes from aqueous solution using bentonite, zeolite and perlite: characterization, isotherm and thermodynamic studies\",\"authors\":\"Osman Uygun, R. Güven, Gaye Ö. Çakal\",\"doi\":\"10.1180/clm.2023.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, stable and radioactive lead removal from aqueous solution by adsorption using bentonite, zeolite and perlite minerals obtained from various locations in Türkiye was studied in batch experiments. The adsorbents were first characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), and then the physicochemical properties were determined. The effects of various factors that influence adsorption, such as solution pH, adsorbent dosage, contact time, initial Pb2+ ion concentration, temperature and shaking rate, were studied. The adsorption of Pb2+ was modelled using the Langmuir, Freundlich and Dubinin–Radushkevich isotherms. The adsorption capacities of the minerals for Pb2+ followed the order: bentonite > zeolite > perlite, and the maximum adsorption capacities were 131.6, 36.1 and 21.5 mg g–1, respectively. The adsorption data fit well with the Langmuir isotherm. The bonding of lead ions on the adsorbents was confirmed by XRF and FTIR analyses after the adsorption process. The adsorption of Pb2+ ions on the adsorbents was spontaneous and endothermic. The adsorption process took place by cation exchange in addition to electrostatic interaction. Furthermore, radioactive 210Pb2+ adsorption on bentonite, zeolite and perlite was studied, with the analyte being analysed using a liquid scintillation counter. It was seen that in addition to Pb(II) ions, these minerals also adsorbed the radioactive decay products of 210Pb, which were 210Po and 210Bi. The removal percentages of 210Pb were 95%, 38% and 30% and those of 210Po were 75%, 60% and 74% for bentonite, zeolite and perlite, respectively.\",\"PeriodicalId\":10311,\"journal\":{\"name\":\"Clay Minerals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clay Minerals\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1180/clm.2023.18\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clay Minerals","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1180/clm.2023.18","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

摘要

在这项研究中,在分批实验中研究了使用从土耳其不同地点获得的膨润土、沸石和珍珠岩矿物通过吸附从水溶液中稳定和具有放射性的铅去除。首先用X射线衍射(XRD)、X射线荧光(XRF)、傅立叶变换红外光谱(FTIR)、扫描电子显微镜(SEM)和能谱仪(EDS)对吸附剂进行了表征,然后测定了吸附剂的物理化学性质。研究了溶液pH、吸附剂用量、接触时间、Pb2+初始浓度、温度和振荡速率等因素对吸附性能的影响。使用Langmuir、Freundlich和Dubinin–Radushkevich等温线模拟Pb2+的吸附。矿物对Pb2+的吸附容量依次为:膨润土>沸石>珍珠岩,最大吸附容量分别为131.6、36.1和21.5 mg g–1。吸附数据符合Langmuir等温线。吸附过程后,通过XRF和FTIR分析证实了铅离子在吸附剂上的结合。Pb2+离子在吸附剂上的吸附是自发的和吸热的。除静电相互作用外,吸附过程还通过阳离子交换进行。此外,还研究了放射性210Pb2+在膨润土、沸石和珍珠岩上的吸附,并用液体闪烁计数器分析了分析物。结果表明,除Pb(II)离子外,这些矿物还吸附了210Pb的放射性衰变产物,即210Po和210Bi。膨润土、沸石和珍珠岩对210Pb的去除率分别为95%、38%和30%,对210Po的去除率为75%、60%和74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adsorptive removal of stable and radioactive Pb(II) isotopes from aqueous solution using bentonite, zeolite and perlite: characterization, isotherm and thermodynamic studies
In this study, stable and radioactive lead removal from aqueous solution by adsorption using bentonite, zeolite and perlite minerals obtained from various locations in Türkiye was studied in batch experiments. The adsorbents were first characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS), and then the physicochemical properties were determined. The effects of various factors that influence adsorption, such as solution pH, adsorbent dosage, contact time, initial Pb2+ ion concentration, temperature and shaking rate, were studied. The adsorption of Pb2+ was modelled using the Langmuir, Freundlich and Dubinin–Radushkevich isotherms. The adsorption capacities of the minerals for Pb2+ followed the order: bentonite > zeolite > perlite, and the maximum adsorption capacities were 131.6, 36.1 and 21.5 mg g–1, respectively. The adsorption data fit well with the Langmuir isotherm. The bonding of lead ions on the adsorbents was confirmed by XRF and FTIR analyses after the adsorption process. The adsorption of Pb2+ ions on the adsorbents was spontaneous and endothermic. The adsorption process took place by cation exchange in addition to electrostatic interaction. Furthermore, radioactive 210Pb2+ adsorption on bentonite, zeolite and perlite was studied, with the analyte being analysed using a liquid scintillation counter. It was seen that in addition to Pb(II) ions, these minerals also adsorbed the radioactive decay products of 210Pb, which were 210Po and 210Bi. The removal percentages of 210Pb were 95%, 38% and 30% and those of 210Po were 75%, 60% and 74% for bentonite, zeolite and perlite, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clay Minerals
Clay Minerals 地学-矿物学
CiteScore
3.00
自引率
20.00%
发文量
25
审稿时长
6 months
期刊介绍: Clay Minerals is an international journal of mineral sciences, published four times a year, including research papers about clays, clay minerals and related materials, natural or synthetic. The journal includes papers on Earth processes soil science, geology/mineralogy, chemistry/material science, colloid/surface science, applied science and technology and health/ environment topics. The journal has an international editorial board with members from fifteen countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信