{"title":"荟萃分析中未报告的标准误差","authors":"N. Longford","doi":"10.21307/stattrans-2021-035","DOIUrl":null,"url":null,"abstract":"Abstract A study that would otherwise be eligible is commonly excluded from a meta-analysis when the standard error of its treatment-effect estimator, or the estimate of the variance of the outcomes, is not reported and cannot be recovered from the available information. This is wasteful when the estimate of the treatment effect is reported. We assess the loss of information caused by this practice and explore methods of imputation for the missing variance. The methods are illustrated on two sets of examples, one constructed specifically for illustration and another based on a published systematic review.","PeriodicalId":37985,"journal":{"name":"Statistics in Transition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unreported standard errors in meta-analysis\",\"authors\":\"N. Longford\",\"doi\":\"10.21307/stattrans-2021-035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A study that would otherwise be eligible is commonly excluded from a meta-analysis when the standard error of its treatment-effect estimator, or the estimate of the variance of the outcomes, is not reported and cannot be recovered from the available information. This is wasteful when the estimate of the treatment effect is reported. We assess the loss of information caused by this practice and explore methods of imputation for the missing variance. The methods are illustrated on two sets of examples, one constructed specifically for illustration and another based on a published systematic review.\",\"PeriodicalId\":37985,\"journal\":{\"name\":\"Statistics in Transition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Transition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21307/stattrans-2021-035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Transition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21307/stattrans-2021-035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Abstract A study that would otherwise be eligible is commonly excluded from a meta-analysis when the standard error of its treatment-effect estimator, or the estimate of the variance of the outcomes, is not reported and cannot be recovered from the available information. This is wasteful when the estimate of the treatment effect is reported. We assess the loss of information caused by this practice and explore methods of imputation for the missing variance. The methods are illustrated on two sets of examples, one constructed specifically for illustration and another based on a published systematic review.
期刊介绍:
Statistics in Transition (SiT) is an international journal published jointly by the Polish Statistical Association (PTS) and the Central Statistical Office of Poland (CSO/GUS), which sponsors this publication. Launched in 1993, it was issued twice a year until 2006; since then it appears - under a slightly changed title, Statistics in Transition new series - three times a year; and after 2013 as a regular quarterly journal." The journal provides a forum for exchange of ideas and experience amongst members of international community of statisticians, data producers and users, including researchers, teachers, policy makers and the general public. Its initially dominating focus on statistical issues pertinent to transition from centrally planned to a market-oriented economy has gradually been extended to embracing statistical problems related to development and modernization of the system of public (official) statistics, in general.