离散坐标系中板几何中性粒子输运问题的响应矩阵求解器和考虑非均匀内源的能量多组公式

IF 0.7 4区 工程技术 Q3 MATHEMATICS, APPLIED
L.R.C. Moraes, R. Barros, R. Vasques
{"title":"离散坐标系中板几何中性粒子输运问题的响应矩阵求解器和考虑非均匀内源的能量多组公式","authors":"L.R.C. Moraes, R. Barros, R. Vasques","doi":"10.1080/23324309.2023.2194294","DOIUrl":null,"url":null,"abstract":"Abstract We present in this work an extension of the Response Matrix (RM) method for the numerical solution of slab-geometry neutral particle transport equation in the discrete ordinates (S ) and energy multigroup formulations considering non-uniform sources. By using the term non-uniform we mean that the particle source is not spatially uniform inside the regions that compose the domain. The extended RM method, differently from the conventional RM method, is based on the solution of “source-independent” auxiliary problems (Green’s functions). The solution of these auxiliary problems is used in conjunction with the given non-uniform source to generate the sweeping matrices for the extended RM method. Numerical results with respect to both uniform and non-uniform source problems are given to illustrate the efficiency of the offered extended RM method.","PeriodicalId":54305,"journal":{"name":"Journal of Computational and Theoretical Transport","volume":"52 1","pages":"55 - 77"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Response Matrix Solver for Slab-Geometry Neutral Particle Transport Problems in the Discrete Ordinates and Energy Multigroup Formulations Considering Non-Uniform Interior Sources\",\"authors\":\"L.R.C. Moraes, R. Barros, R. Vasques\",\"doi\":\"10.1080/23324309.2023.2194294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present in this work an extension of the Response Matrix (RM) method for the numerical solution of slab-geometry neutral particle transport equation in the discrete ordinates (S ) and energy multigroup formulations considering non-uniform sources. By using the term non-uniform we mean that the particle source is not spatially uniform inside the regions that compose the domain. The extended RM method, differently from the conventional RM method, is based on the solution of “source-independent” auxiliary problems (Green’s functions). The solution of these auxiliary problems is used in conjunction with the given non-uniform source to generate the sweeping matrices for the extended RM method. Numerical results with respect to both uniform and non-uniform source problems are given to illustrate the efficiency of the offered extended RM method.\",\"PeriodicalId\":54305,\"journal\":{\"name\":\"Journal of Computational and Theoretical Transport\",\"volume\":\"52 1\",\"pages\":\"55 - 77\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Theoretical Transport\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/23324309.2023.2194294\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Theoretical Transport","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/23324309.2023.2194294","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要在这项工作中,我们提出了响应矩阵(RM)方法的扩展,用于离散坐标(S)中的平板几何中性粒子输运方程的数值解和考虑非均匀源的能量多群公式。使用术语非均匀,我们的意思是粒子源在组成域的区域内的空间不均匀。与传统的RM方法不同,扩展的RM方法基于“源无关”辅助问题(格林函数)的求解。这些辅助问题的解与给定的非均匀源一起用于生成扩展RM方法的扫描矩阵。给出了均匀和非均匀源问题的数值结果,以说明所提供的扩展RM方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Response Matrix Solver for Slab-Geometry Neutral Particle Transport Problems in the Discrete Ordinates and Energy Multigroup Formulations Considering Non-Uniform Interior Sources
Abstract We present in this work an extension of the Response Matrix (RM) method for the numerical solution of slab-geometry neutral particle transport equation in the discrete ordinates (S ) and energy multigroup formulations considering non-uniform sources. By using the term non-uniform we mean that the particle source is not spatially uniform inside the regions that compose the domain. The extended RM method, differently from the conventional RM method, is based on the solution of “source-independent” auxiliary problems (Green’s functions). The solution of these auxiliary problems is used in conjunction with the given non-uniform source to generate the sweeping matrices for the extended RM method. Numerical results with respect to both uniform and non-uniform source problems are given to illustrate the efficiency of the offered extended RM method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational and Theoretical Transport
Journal of Computational and Theoretical Transport Mathematics-Mathematical Physics
CiteScore
1.30
自引率
0.00%
发文量
15
期刊介绍: Emphasizing computational methods and theoretical studies, this unique journal invites articles on neutral-particle transport, kinetic theory, radiative transfer, charged-particle transport, and macroscopic transport phenomena. In addition, the journal encourages articles on uncertainty quantification related to these fields. Offering a range of information and research methodologies unavailable elsewhere, Journal of Computational and Theoretical Transport brings together closely related mathematical concepts and techniques to encourage a productive, interdisciplinary exchange of ideas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信