{"title":"一类新的关于脆点的双极软分离公理","authors":"Baravan A. Asaad, Sagvan Y. Musa","doi":"10.1515/dema-2022-0189","DOIUrl":null,"url":null,"abstract":"Abstract The main objective of this study is to define a new class of bipolar soft (BS) separation axioms known as BS T ˜ ˜ i {\\widetilde{\\widetilde{T}}}_{i} -space ( i = 0 , 1 , 2 , 3 , 4 ) \\left(i=0,1,2,3,4) . This type is defined in terms of ordinary points. We prove that BS T ˜ ˜ i {\\widetilde{\\widetilde{T}}}_{i} -space implies BS T ˜ ˜ i − 1 {\\widetilde{\\widetilde{T}}}_{i-1} -space for i = 1 , 2 i=1,2 ; however, the opposite is incorrect, as demonstrated by an example. For i = 0 , 1 , 2 , 3 , 4 i=0,1,2,3,4 , we investigate that every BS T ˜ ˜ i {\\widetilde{\\widetilde{T}}}_{i} -space is soft T ˜ i {\\widetilde{T}}_{i} -space; and we set up a condition in which the reverse is true. Moreover, we point out that a BS subspace of a BS T ˜ ˜ i {\\widetilde{\\widetilde{T}}}_{i} -space is a BS T ˜ ˜ i {\\widetilde{\\widetilde{T}}}_{i} -space for i = 0 , 1 , 2 , 3 i=0,1,2,3 .","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel class of bipolar soft separation axioms concerning crisp points\",\"authors\":\"Baravan A. Asaad, Sagvan Y. Musa\",\"doi\":\"10.1515/dema-2022-0189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The main objective of this study is to define a new class of bipolar soft (BS) separation axioms known as BS T ˜ ˜ i {\\\\widetilde{\\\\widetilde{T}}}_{i} -space ( i = 0 , 1 , 2 , 3 , 4 ) \\\\left(i=0,1,2,3,4) . This type is defined in terms of ordinary points. We prove that BS T ˜ ˜ i {\\\\widetilde{\\\\widetilde{T}}}_{i} -space implies BS T ˜ ˜ i − 1 {\\\\widetilde{\\\\widetilde{T}}}_{i-1} -space for i = 1 , 2 i=1,2 ; however, the opposite is incorrect, as demonstrated by an example. For i = 0 , 1 , 2 , 3 , 4 i=0,1,2,3,4 , we investigate that every BS T ˜ ˜ i {\\\\widetilde{\\\\widetilde{T}}}_{i} -space is soft T ˜ i {\\\\widetilde{T}}_{i} -space; and we set up a condition in which the reverse is true. Moreover, we point out that a BS subspace of a BS T ˜ ˜ i {\\\\widetilde{\\\\widetilde{T}}}_{i} -space is a BS T ˜ ˜ i {\\\\widetilde{\\\\widetilde{T}}}_{i} -space for i = 0 , 1 , 2 , 3 i=0,1,2,3 .\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/dema-2022-0189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A novel class of bipolar soft separation axioms concerning crisp points
Abstract The main objective of this study is to define a new class of bipolar soft (BS) separation axioms known as BS T ˜ ˜ i {\widetilde{\widetilde{T}}}_{i} -space ( i = 0 , 1 , 2 , 3 , 4 ) \left(i=0,1,2,3,4) . This type is defined in terms of ordinary points. We prove that BS T ˜ ˜ i {\widetilde{\widetilde{T}}}_{i} -space implies BS T ˜ ˜ i − 1 {\widetilde{\widetilde{T}}}_{i-1} -space for i = 1 , 2 i=1,2 ; however, the opposite is incorrect, as demonstrated by an example. For i = 0 , 1 , 2 , 3 , 4 i=0,1,2,3,4 , we investigate that every BS T ˜ ˜ i {\widetilde{\widetilde{T}}}_{i} -space is soft T ˜ i {\widetilde{T}}_{i} -space; and we set up a condition in which the reverse is true. Moreover, we point out that a BS subspace of a BS T ˜ ˜ i {\widetilde{\widetilde{T}}}_{i} -space is a BS T ˜ ˜ i {\widetilde{\widetilde{T}}}_{i} -space for i = 0 , 1 , 2 , 3 i=0,1,2,3 .