一类新的关于脆点的双极软分离公理

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Baravan A. Asaad, Sagvan Y. Musa
{"title":"一类新的关于脆点的双极软分离公理","authors":"Baravan A. Asaad, Sagvan Y. Musa","doi":"10.1515/dema-2022-0189","DOIUrl":null,"url":null,"abstract":"Abstract The main objective of this study is to define a new class of bipolar soft (BS) separation axioms known as BS T ˜ ˜ i {\\widetilde{\\widetilde{T}}}_{i} -space ( i = 0 , 1 , 2 , 3 , 4 ) \\left(i=0,1,2,3,4) . This type is defined in terms of ordinary points. We prove that BS T ˜ ˜ i {\\widetilde{\\widetilde{T}}}_{i} -space implies BS T ˜ ˜ i − 1 {\\widetilde{\\widetilde{T}}}_{i-1} -space for i = 1 , 2 i=1,2 ; however, the opposite is incorrect, as demonstrated by an example. For i = 0 , 1 , 2 , 3 , 4 i=0,1,2,3,4 , we investigate that every BS T ˜ ˜ i {\\widetilde{\\widetilde{T}}}_{i} -space is soft T ˜ i {\\widetilde{T}}_{i} -space; and we set up a condition in which the reverse is true. Moreover, we point out that a BS subspace of a BS T ˜ ˜ i {\\widetilde{\\widetilde{T}}}_{i} -space is a BS T ˜ ˜ i {\\widetilde{\\widetilde{T}}}_{i} -space for i = 0 , 1 , 2 , 3 i=0,1,2,3 .","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel class of bipolar soft separation axioms concerning crisp points\",\"authors\":\"Baravan A. Asaad, Sagvan Y. Musa\",\"doi\":\"10.1515/dema-2022-0189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The main objective of this study is to define a new class of bipolar soft (BS) separation axioms known as BS T ˜ ˜ i {\\\\widetilde{\\\\widetilde{T}}}_{i} -space ( i = 0 , 1 , 2 , 3 , 4 ) \\\\left(i=0,1,2,3,4) . This type is defined in terms of ordinary points. We prove that BS T ˜ ˜ i {\\\\widetilde{\\\\widetilde{T}}}_{i} -space implies BS T ˜ ˜ i − 1 {\\\\widetilde{\\\\widetilde{T}}}_{i-1} -space for i = 1 , 2 i=1,2 ; however, the opposite is incorrect, as demonstrated by an example. For i = 0 , 1 , 2 , 3 , 4 i=0,1,2,3,4 , we investigate that every BS T ˜ ˜ i {\\\\widetilde{\\\\widetilde{T}}}_{i} -space is soft T ˜ i {\\\\widetilde{T}}_{i} -space; and we set up a condition in which the reverse is true. Moreover, we point out that a BS subspace of a BS T ˜ ˜ i {\\\\widetilde{\\\\widetilde{T}}}_{i} -space is a BS T ˜ ˜ i {\\\\widetilde{\\\\widetilde{T}}}_{i} -space for i = 0 , 1 , 2 , 3 i=0,1,2,3 .\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/dema-2022-0189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本研究的主要目的是定义一类新的双极软(BS)分离公理,称为BS T~i{\widetilde{\widetilde{T}}}_{i}-空间(i=0,1,2,3,4)\left(i=0、1、2、3、4)。这种类型是根据普通点定义的。我们证明了当i=1,2 i=1、2时,BS T~i{\widetilder{T}}_{i}-空间意味着BS T~i-1{\ widetilde{\Widetilder{T}}}_{i-1}-空间;然而,正如一个例子所表明的那样,相反的观点是不正确的。对于i=0,1,2,3,4 i=0,1,2,3,4,我们研究了每个BS T~i{\widetilder{\T}}_{i}-空间都是软T~i{\widettilder{T}}_{i-空间;并且我们建立了一个条件,在这个条件下,相反的情况成立。此外,我们指出,对于i=0,1,2,3 i=0,1,2,3,BS T~i{\widetilder{T}}_{i}-空间的BS子空间是BS T~i{\widetilter{\Widetilder{T}}_{i-空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel class of bipolar soft separation axioms concerning crisp points
Abstract The main objective of this study is to define a new class of bipolar soft (BS) separation axioms known as BS T ˜ ˜ i {\widetilde{\widetilde{T}}}_{i} -space ( i = 0 , 1 , 2 , 3 , 4 ) \left(i=0,1,2,3,4) . This type is defined in terms of ordinary points. We prove that BS T ˜ ˜ i {\widetilde{\widetilde{T}}}_{i} -space implies BS T ˜ ˜ i − 1 {\widetilde{\widetilde{T}}}_{i-1} -space for i = 1 , 2 i=1,2 ; however, the opposite is incorrect, as demonstrated by an example. For i = 0 , 1 , 2 , 3 , 4 i=0,1,2,3,4 , we investigate that every BS T ˜ ˜ i {\widetilde{\widetilde{T}}}_{i} -space is soft T ˜ i {\widetilde{T}}_{i} -space; and we set up a condition in which the reverse is true. Moreover, we point out that a BS subspace of a BS T ˜ ˜ i {\widetilde{\widetilde{T}}}_{i} -space is a BS T ˜ ˜ i {\widetilde{\widetilde{T}}}_{i} -space for i = 0 , 1 , 2 , 3 i=0,1,2,3 .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信