平衡律非齐次系统的相对熵法

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
C. Christoforou
{"title":"平衡律非齐次系统的相对熵法","authors":"C. Christoforou","doi":"10.1090/qam/1577","DOIUrl":null,"url":null,"abstract":"General hyperbolic systems of balance laws with inhomogeneity in space and time in all constitutive functions are studied in the context of relative entropy. A framework is developed in this setting that contributes to a measure-valued weak vs. strong uniqueness theorem, a stability theorem of viscous solutions and a convergence theorem as the viscosity parameter tends to zero. The main goal of this paper is to develop hypotheses under which the relative entropy framework can still be applied. Examples of systems with inhomogeneity that have different characteristics are presented and the hypotheses are discussed in the setting of each example.","PeriodicalId":20964,"journal":{"name":"Quarterly of Applied Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/qam/1577","citationCount":"1","resultStr":"{\"title\":\"The relative entropy method for inhomogeneous systems of balance laws\",\"authors\":\"C. Christoforou\",\"doi\":\"10.1090/qam/1577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"General hyperbolic systems of balance laws with inhomogeneity in space and time in all constitutive functions are studied in the context of relative entropy. A framework is developed in this setting that contributes to a measure-valued weak vs. strong uniqueness theorem, a stability theorem of viscous solutions and a convergence theorem as the viscosity parameter tends to zero. The main goal of this paper is to develop hypotheses under which the relative entropy framework can still be applied. Examples of systems with inhomogeneity that have different characteristics are presented and the hypotheses are discussed in the setting of each example.\",\"PeriodicalId\":20964,\"journal\":{\"name\":\"Quarterly of Applied Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/qam/1577\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/qam/1577\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/qam/1577","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

在相对熵的背景下,研究了在所有本构函数中具有空间和时间不均匀性的平衡律的一般双曲系统。在这种情况下开发了一个框架,该框架有助于测度值弱唯一性与强唯一性定理、粘性解的稳定性定理和粘性参数趋于零时的收敛定理。本文的主要目标是提出相对熵框架仍然可以应用的假设。给出了具有不同特征的不均匀性系统的例子,并在每个例子的设置中讨论了假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The relative entropy method for inhomogeneous systems of balance laws
General hyperbolic systems of balance laws with inhomogeneity in space and time in all constitutive functions are studied in the context of relative entropy. A framework is developed in this setting that contributes to a measure-valued weak vs. strong uniqueness theorem, a stability theorem of viscous solutions and a convergence theorem as the viscosity parameter tends to zero. The main goal of this paper is to develop hypotheses under which the relative entropy framework can still be applied. Examples of systems with inhomogeneity that have different characteristics are presented and the hypotheses are discussed in the setting of each example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quarterly of Applied Mathematics
Quarterly of Applied Mathematics 数学-应用数学
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Quarterly of Applied Mathematics contains original papers in applied mathematics which have a close connection with applications. An author index appears in the last issue of each volume. This journal, published quarterly by Brown University with articles electronically published individually before appearing in an issue, is distributed by the American Mathematical Society (AMS). In order to take advantage of some features offered for this journal, users will occasionally be linked to pages on the AMS website.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信