{"title":"超材料传感器材料特性研究综述","authors":"K. Singh, Santosh Kumar Mahto, R. Sinha","doi":"10.1108/sr-09-2021-0325","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to concentrate on research that has been conducted in the previous decade on metamaterial (MTM)-based sensors for material characterization, which includes solid dielectrics, micro fluids and biomolecules.\n\n\nDesign/methodology/approach\nThere has been a vast advancement in sensors based on MTM since the past few decades. MTM elements provide a sensitive response to materials while having a tiny footprint, making them an appealing alternative for realizing diverse sensing devices.\n\n\nFindings\nRelated research papers on MTM sensors published in reputable journals were reviewed in this report, with a specific emphasis on the structure, size and nature of the materials characterized. Because electromagnetic wave interaction excites MTM structures, sensing applications around the electromagnetic spectrum are possible.\n\n\nOriginality/value\nThe paper contains valuable information on MTM sensor technology for material characterization, and this study also highlights the challenges and approaches that will guide future development.\n","PeriodicalId":49540,"journal":{"name":"Sensor Review","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review: material characterization with metamaterial based sensors\",\"authors\":\"K. Singh, Santosh Kumar Mahto, R. Sinha\",\"doi\":\"10.1108/sr-09-2021-0325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis paper aims to concentrate on research that has been conducted in the previous decade on metamaterial (MTM)-based sensors for material characterization, which includes solid dielectrics, micro fluids and biomolecules.\\n\\n\\nDesign/methodology/approach\\nThere has been a vast advancement in sensors based on MTM since the past few decades. MTM elements provide a sensitive response to materials while having a tiny footprint, making them an appealing alternative for realizing diverse sensing devices.\\n\\n\\nFindings\\nRelated research papers on MTM sensors published in reputable journals were reviewed in this report, with a specific emphasis on the structure, size and nature of the materials characterized. Because electromagnetic wave interaction excites MTM structures, sensing applications around the electromagnetic spectrum are possible.\\n\\n\\nOriginality/value\\nThe paper contains valuable information on MTM sensor technology for material characterization, and this study also highlights the challenges and approaches that will guide future development.\\n\",\"PeriodicalId\":49540,\"journal\":{\"name\":\"Sensor Review\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensor Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/sr-09-2021-0325\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/sr-09-2021-0325","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
A review: material characterization with metamaterial based sensors
Purpose
This paper aims to concentrate on research that has been conducted in the previous decade on metamaterial (MTM)-based sensors for material characterization, which includes solid dielectrics, micro fluids and biomolecules.
Design/methodology/approach
There has been a vast advancement in sensors based on MTM since the past few decades. MTM elements provide a sensitive response to materials while having a tiny footprint, making them an appealing alternative for realizing diverse sensing devices.
Findings
Related research papers on MTM sensors published in reputable journals were reviewed in this report, with a specific emphasis on the structure, size and nature of the materials characterized. Because electromagnetic wave interaction excites MTM structures, sensing applications around the electromagnetic spectrum are possible.
Originality/value
The paper contains valuable information on MTM sensor technology for material characterization, and this study also highlights the challenges and approaches that will guide future development.
期刊介绍:
Sensor Review publishes peer reviewed state-of-the-art articles and specially commissioned technology reviews. Each issue of this multidisciplinary journal includes high quality original content covering all aspects of sensors and their applications, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of high technology sensor developments.
Emphasis is placed on detailed independent regular and review articles identifying the full range of sensors currently available for specific applications, as well as highlighting those areas of technology showing great potential for the future. The journal encourages authors to consider the practical and social implications of their articles.
All articles undergo a rigorous double-blind peer review process which involves an initial assessment of suitability of an article for the journal followed by sending it to, at least two reviewers in the field if deemed suitable.
Sensor Review’s coverage includes, but is not restricted to:
Mechanical sensors – position, displacement, proximity, velocity, acceleration, vibration, force, torque, pressure, and flow sensors
Electric and magnetic sensors – resistance, inductive, capacitive, piezoelectric, eddy-current, electromagnetic, photoelectric, and thermoelectric sensors
Temperature sensors, infrared sensors, humidity sensors
Optical, electro-optical and fibre-optic sensors and systems, photonic sensors
Biosensors, wearable and implantable sensors and systems, immunosensors
Gas and chemical sensors and systems, polymer sensors
Acoustic and ultrasonic sensors
Haptic sensors and devices
Smart and intelligent sensors and systems
Nanosensors, NEMS, MEMS, and BioMEMS
Quantum sensors
Sensor systems: sensor data fusion, signals, processing and interfacing, signal conditioning.