三维可压缩量子磁流体力学模型解的高阶导数的最优衰减率

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Juan Wang, Yinghui Zhang
{"title":"三维可压缩量子磁流体力学模型解的高阶导数的最优衰减率","authors":"Juan Wang, Yinghui Zhang","doi":"10.1515/anona-2021-0219","DOIUrl":null,"url":null,"abstract":"Abstract We investigate optimal decay rates for higher–order spatial derivatives of strong solutions to the 3D Cauchy problem of the compressible viscous quantum magnetohydrodynamic model in the H5 × H4 × H4 framework, and the main novelty of this work is three–fold: First, we show that fourth order spatial derivative of the solution converges to zero at the L2-rate (1+t)-114 {L^2} - {\\rm{rate}}\\,{(1 + t)^{- {{11} \\over 4}}} , which is same as one of the heat equation, and particularly faster than the L2-rate (1+t)-54 {L^2} - {\\rm{rate}}\\,{(1 + t)^{- {5 \\over 4}}} in Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and the L2-rate (1+t)-94 {L^2} - {\\rm{rate}}\\,{(1 + t)^{- {9 \\over 4}}} , in Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019]. Second, we prove that fifth–order spatial derivative of density ρ converges to zero at the L2-rate (1+t)-134 {L^2} - {\\rm{rate}}\\,{(1 + t)^{- {{13} \\over 4}}} , which is same as that of the heat equation, and particularly faster than ones of Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019]. Third, we show that the high-frequency part of the fourth order spatial derivatives of the velocity u and magnetic B converge to zero at the L2-rate (1+t)-134 {L^2} - {\\rm{rate}}\\,{(1 + t)^{- {{13} \\over 4}}} , which are faster than ones of themselves, and totally new as compared to Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019].","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal decay rate for higher–order derivatives of solution to the 3D compressible quantum magnetohydrodynamic model\",\"authors\":\"Juan Wang, Yinghui Zhang\",\"doi\":\"10.1515/anona-2021-0219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We investigate optimal decay rates for higher–order spatial derivatives of strong solutions to the 3D Cauchy problem of the compressible viscous quantum magnetohydrodynamic model in the H5 × H4 × H4 framework, and the main novelty of this work is three–fold: First, we show that fourth order spatial derivative of the solution converges to zero at the L2-rate (1+t)-114 {L^2} - {\\\\rm{rate}}\\\\,{(1 + t)^{- {{11} \\\\over 4}}} , which is same as one of the heat equation, and particularly faster than the L2-rate (1+t)-54 {L^2} - {\\\\rm{rate}}\\\\,{(1 + t)^{- {5 \\\\over 4}}} in Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and the L2-rate (1+t)-94 {L^2} - {\\\\rm{rate}}\\\\,{(1 + t)^{- {9 \\\\over 4}}} , in Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019]. Second, we prove that fifth–order spatial derivative of density ρ converges to zero at the L2-rate (1+t)-134 {L^2} - {\\\\rm{rate}}\\\\,{(1 + t)^{- {{13} \\\\over 4}}} , which is same as that of the heat equation, and particularly faster than ones of Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019]. Third, we show that the high-frequency part of the fourth order spatial derivatives of the velocity u and magnetic B converge to zero at the L2-rate (1+t)-134 {L^2} - {\\\\rm{rate}}\\\\,{(1 + t)^{- {{13} \\\\over 4}}} , which are faster than ones of themselves, and totally new as compared to Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019].\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2021-0219\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2021-0219","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文研究了H5 × H4 × H4框架下可压缩粘性量子磁流体力学模型三维Cauchy问题强解的高阶空间导数的最优衰减率,主要新颖之处有三点:首先,我们证明了解的四阶空间导数在L2-rate (1+t)-114 {L^2} - {\rm{rate}}\,{(1 +t) ^{-{{11} \ / 4}}}处收敛于零,这与热方程之一相同,并且特别快于L2-rate (1+t)-54 {L^2} - {\rm{rate}}\,{(1 +t) ^{-{5 \ / 4}}}}。Angew。数学。理论物理。Angew。数学。理论物理。[j].农业科学,2016,31(1):1 - 4。其次,我们证明了密度ρ的五阶空间导数在L2-rate (1+t)-134 {L^2} - {\rm{rate}}\,{(1 +t) ^{-{{13} \ / 4}}下收敛于零,这与热方程的收敛速度相同,并且比普徐[Z]的收敛速度更快。Angew。数学。理论物理。中国农业科学,68:1,2017]。Angew。数学。理论物理。[j].农业科学,2016,31(1):1 - 4。第三,我们证明了速度u和磁B的四阶空间导数的高频部分在L2-rate (1+t)-134 {L^2} - {\rm{rate}}\,{(1 +t) ^{-{{13} \ / 4}}}处收敛于零,这比它们本身更快,与普徐[Z]相比是全新的。Angew。数学。理论物理。中国农业科学,68:1,2017]。Angew。数学。理论物理。[j].农业科学,2016,31(1):1 - 4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal decay rate for higher–order derivatives of solution to the 3D compressible quantum magnetohydrodynamic model
Abstract We investigate optimal decay rates for higher–order spatial derivatives of strong solutions to the 3D Cauchy problem of the compressible viscous quantum magnetohydrodynamic model in the H5 × H4 × H4 framework, and the main novelty of this work is three–fold: First, we show that fourth order spatial derivative of the solution converges to zero at the L2-rate (1+t)-114 {L^2} - {\rm{rate}}\,{(1 + t)^{- {{11} \over 4}}} , which is same as one of the heat equation, and particularly faster than the L2-rate (1+t)-54 {L^2} - {\rm{rate}}\,{(1 + t)^{- {5 \over 4}}} in Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and the L2-rate (1+t)-94 {L^2} - {\rm{rate}}\,{(1 + t)^{- {9 \over 4}}} , in Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019]. Second, we prove that fifth–order spatial derivative of density ρ converges to zero at the L2-rate (1+t)-134 {L^2} - {\rm{rate}}\,{(1 + t)^{- {{13} \over 4}}} , which is same as that of the heat equation, and particularly faster than ones of Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019]. Third, we show that the high-frequency part of the fourth order spatial derivatives of the velocity u and magnetic B converge to zero at the L2-rate (1+t)-134 {L^2} - {\rm{rate}}\,{(1 + t)^{- {{13} \over 4}}} , which are faster than ones of themselves, and totally new as compared to Pu–Xu [Z. Angew. Math. Phys., 68:1, 2017] and Xi–Pu–Guo [Z. Angew. Math. Phys., 70:1, 2019].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信