本征函数平均值的改进:测地光束的应用

IF 1.3 1区 数学 Q1 MATHEMATICS
Y. Canzani, J. Galkowski
{"title":"本征函数平均值的改进:测地光束的应用","authors":"Y. Canzani, J. Galkowski","doi":"10.4310/jdg/1689262062","DOIUrl":null,"url":null,"abstract":"Let $(M,g)$ be a smooth, compact Riemannian manifold and $\\{\\phi_\\lambda \\}$ an $L^2$-normalized sequence of Laplace eigenfunctions, $-\\Delta_g\\phi_\\lambda =\\lambda^2 \\phi_\\lambda$. Given a smooth submanifold $H \\subset M$ of codimension $k\\geq 1$, we find conditions on the pair $(M,H)$, even when $H=\\{x\\}$, for which $$ \\Big|\\int_H\\phi_\\lambda d\\sigma_H\\Big|=O\\Big(\\frac{\\lambda^{\\frac{k-1}{2}}}{\\sqrt{\\log \\lambda}}\\Big)\\qquad \\text{or}\\qquad |\\phi_\\lambda(x)|=O\\Big(\\frac{\\lambda ^{\\frac{n-1}{2}}}{\\sqrt{\\log \\lambda}}\\Big), $$ as $\\lambda\\to \\infty$. These conditions require no global assumption on the manifold $M$ and instead relate to the structure of the set of recurrent directions in the unit normal bundle to $H$. Our results extend all previously known conditions guaranteeing improvements on averages, including those on sup-norms. For example, we show that if $(M,g)$ is a surface with Anosov geodesic flow, then there are logarithmically improved averages for any $H\\subset M$. We also find weaker conditions than having no conjugate points which guarantee $\\sqrt{\\log \\lambda}$ improvements for the $L^\\infty$ norm of eigenfunctions. Our results are obtained using geodesic beam techniques, which yield a mechanism for obtaining general quantitative improvements for averages and sup-norms.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2018-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Improvements for eigenfunction averages: An application of geodesic beams\",\"authors\":\"Y. Canzani, J. Galkowski\",\"doi\":\"10.4310/jdg/1689262062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(M,g)$ be a smooth, compact Riemannian manifold and $\\\\{\\\\phi_\\\\lambda \\\\}$ an $L^2$-normalized sequence of Laplace eigenfunctions, $-\\\\Delta_g\\\\phi_\\\\lambda =\\\\lambda^2 \\\\phi_\\\\lambda$. Given a smooth submanifold $H \\\\subset M$ of codimension $k\\\\geq 1$, we find conditions on the pair $(M,H)$, even when $H=\\\\{x\\\\}$, for which $$ \\\\Big|\\\\int_H\\\\phi_\\\\lambda d\\\\sigma_H\\\\Big|=O\\\\Big(\\\\frac{\\\\lambda^{\\\\frac{k-1}{2}}}{\\\\sqrt{\\\\log \\\\lambda}}\\\\Big)\\\\qquad \\\\text{or}\\\\qquad |\\\\phi_\\\\lambda(x)|=O\\\\Big(\\\\frac{\\\\lambda ^{\\\\frac{n-1}{2}}}{\\\\sqrt{\\\\log \\\\lambda}}\\\\Big), $$ as $\\\\lambda\\\\to \\\\infty$. These conditions require no global assumption on the manifold $M$ and instead relate to the structure of the set of recurrent directions in the unit normal bundle to $H$. Our results extend all previously known conditions guaranteeing improvements on averages, including those on sup-norms. For example, we show that if $(M,g)$ is a surface with Anosov geodesic flow, then there are logarithmically improved averages for any $H\\\\subset M$. We also find weaker conditions than having no conjugate points which guarantee $\\\\sqrt{\\\\log \\\\lambda}$ improvements for the $L^\\\\infty$ norm of eigenfunctions. Our results are obtained using geodesic beam techniques, which yield a mechanism for obtaining general quantitative improvements for averages and sup-norms.\",\"PeriodicalId\":15642,\"journal\":{\"name\":\"Journal of Differential Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/jdg/1689262062\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1689262062","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

设$(M,g)$是一个光滑紧凑的黎曼流形,$\{\phi_\lambda \}$是一个$L^2$ -拉普拉斯特征函数的归一化序列,$-\Delta_g\phi_\lambda =\lambda^2 \phi_\lambda$。给定一个余维为$k\geq 1$的光滑子流形$H \subset M$,我们找到了对$(M,H)$的条件,即使当$H=\{x\}$时,$$ \Big|\int_H\phi_\lambda d\sigma_H\Big|=O\Big(\frac{\lambda^{\frac{k-1}{2}}}{\sqrt{\log \lambda}}\Big)\qquad \text{or}\qquad |\phi_\lambda(x)|=O\Big(\frac{\lambda ^{\frac{n-1}{2}}}{\sqrt{\log \lambda}}\Big), $$等于$\lambda\to \infty$。这些条件不需要流形$M$上的全局假设,而是与$H$的单位法向束中循环方向集的结构有关。我们的结果扩展了所有以前已知的保证平均改进的条件,包括那些在超规范上的条件。例如,我们表明,如果$(M,g)$是具有Anosov测地线流的表面,那么对于任何$H\subset M$都有对数改进的平均值。我们还发现了比没有共轭点更弱的条件来保证特征函数的$L^\infty$范数的$\sqrt{\log \lambda}$改进。我们的结果是使用测地线束技术获得的,这产生了一种机制,可以获得平均和超规范的一般定量改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvements for eigenfunction averages: An application of geodesic beams
Let $(M,g)$ be a smooth, compact Riemannian manifold and $\{\phi_\lambda \}$ an $L^2$-normalized sequence of Laplace eigenfunctions, $-\Delta_g\phi_\lambda =\lambda^2 \phi_\lambda$. Given a smooth submanifold $H \subset M$ of codimension $k\geq 1$, we find conditions on the pair $(M,H)$, even when $H=\{x\}$, for which $$ \Big|\int_H\phi_\lambda d\sigma_H\Big|=O\Big(\frac{\lambda^{\frac{k-1}{2}}}{\sqrt{\log \lambda}}\Big)\qquad \text{or}\qquad |\phi_\lambda(x)|=O\Big(\frac{\lambda ^{\frac{n-1}{2}}}{\sqrt{\log \lambda}}\Big), $$ as $\lambda\to \infty$. These conditions require no global assumption on the manifold $M$ and instead relate to the structure of the set of recurrent directions in the unit normal bundle to $H$. Our results extend all previously known conditions guaranteeing improvements on averages, including those on sup-norms. For example, we show that if $(M,g)$ is a surface with Anosov geodesic flow, then there are logarithmically improved averages for any $H\subset M$. We also find weaker conditions than having no conjugate points which guarantee $\sqrt{\log \lambda}$ improvements for the $L^\infty$ norm of eigenfunctions. Our results are obtained using geodesic beam techniques, which yield a mechanism for obtaining general quantitative improvements for averages and sup-norms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信