拟线性Schrödinger系统Nehari-Pohožaev型基态解的存在性

IF 1.8 4区 数学 Q1 MATHEMATICS
Jianqing Chen, Qian Zhang
{"title":"拟线性Schrödinger系统Nehari-Pohožaev型基态解的存在性","authors":"Jianqing Chen, Qian Zhang","doi":"10.57262/die/1610420451","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the following quasilinear Schr\\\"{o}dinger system in the entire space $\\mathbb R^{N}$($N\\geq3$): $$\\left\\{\\begin{align}&-\\Delta u+A(x)u-\\frac{1}{2}\\triangle(u^{2})u = \\frac{2\\alpha}{\\alpha+\\beta}|u|^{\\alpha-2}u|v|^{\\beta},\\\\&-\\Delta v+Bv-\\frac{1}{2}\\triangle(v^{2})v=\\frac{2\\beta}{\\alpha+\\beta}|u|^{\\alpha}|v|^{\\beta-2}v.\\end{align}\\right. $$ By establishing a suitable constraint set and studying related minimization problem, we prove the existence of ground state solution for $\\alpha,\\beta>1$, $2<\\alpha+\\beta<\\frac{4N}{N-2}$. Our results can be looked on as a generalization to results by Guo and Tang (Ground state solutions for quasilinear Schr\\\"{o}dinger systems, J. Math. Anal. Appl. 389 (2012) 322).","PeriodicalId":50581,"journal":{"name":"Differential and Integral Equations","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Existence of ground state solution of Nehari-Pohožaev type for a quasilinear Schrödinger system\",\"authors\":\"Jianqing Chen, Qian Zhang\",\"doi\":\"10.57262/die/1610420451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the following quasilinear Schr\\\\\\\"{o}dinger system in the entire space $\\\\mathbb R^{N}$($N\\\\geq3$): $$\\\\left\\\\{\\\\begin{align}&-\\\\Delta u+A(x)u-\\\\frac{1}{2}\\\\triangle(u^{2})u = \\\\frac{2\\\\alpha}{\\\\alpha+\\\\beta}|u|^{\\\\alpha-2}u|v|^{\\\\beta},\\\\\\\\&-\\\\Delta v+Bv-\\\\frac{1}{2}\\\\triangle(v^{2})v=\\\\frac{2\\\\beta}{\\\\alpha+\\\\beta}|u|^{\\\\alpha}|v|^{\\\\beta-2}v.\\\\end{align}\\\\right. $$ By establishing a suitable constraint set and studying related minimization problem, we prove the existence of ground state solution for $\\\\alpha,\\\\beta>1$, $2<\\\\alpha+\\\\beta<\\\\frac{4N}{N-2}$. Our results can be looked on as a generalization to results by Guo and Tang (Ground state solutions for quasilinear Schr\\\\\\\"{o}dinger systems, J. Math. Anal. Appl. 389 (2012) 322).\",\"PeriodicalId\":50581,\"journal\":{\"name\":\"Differential and Integral Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential and Integral Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/die/1610420451\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential and Integral Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die/1610420451","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了以下拟线性Schr“{o}dinger整个空间中的系统$\mathbb R^{N}$($N\geq3$):$$\left\{\boot{align}&-\Delta u+A(x)u-\frac{1}{2}\triangle(u^{2})u=\ frac{2\alpha}u。\end{align}\right。$$通过建立一个合适的约束集并研究相关的极小化问题,我们证明了$\alpha,\beta>1$,$2<\alpha+\beta<\frac{4N}{N-2}$的基态解的存在性。我们的结果可以看作是郭和唐(拟线性Schr的基态解)结果的推广{o}dinger系统,数学杂志。Anal。Appl。389(2012)322)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of ground state solution of Nehari-Pohožaev type for a quasilinear Schrödinger system
This paper is concerned with the following quasilinear Schr\"{o}dinger system in the entire space $\mathbb R^{N}$($N\geq3$): $$\left\{\begin{align}&-\Delta u+A(x)u-\frac{1}{2}\triangle(u^{2})u = \frac{2\alpha}{\alpha+\beta}|u|^{\alpha-2}u|v|^{\beta},\\&-\Delta v+Bv-\frac{1}{2}\triangle(v^{2})v=\frac{2\beta}{\alpha+\beta}|u|^{\alpha}|v|^{\beta-2}v.\end{align}\right. $$ By establishing a suitable constraint set and studying related minimization problem, we prove the existence of ground state solution for $\alpha,\beta>1$, $2<\alpha+\beta<\frac{4N}{N-2}$. Our results can be looked on as a generalization to results by Guo and Tang (Ground state solutions for quasilinear Schr\"{o}dinger systems, J. Math. Anal. Appl. 389 (2012) 322).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Differential and Integral Equations
Differential and Integral Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Differential and Integral Equations will publish carefully selected research papers on mathematical aspects of differential and integral equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new, and of interest to a substantial number of mathematicians working in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信