有移民的格子人口模型的稳态

IF 1.4 3区 社会学 Q3 DEMOGRAPHY
E. Chernousova, Yaqin Feng, O. Hryniv, S. Molchanov, Joseph Whitmeyer
{"title":"有移民的格子人口模型的稳态","authors":"E. Chernousova, Yaqin Feng, O. Hryniv, S. Molchanov, Joseph Whitmeyer","doi":"10.1080/08898480.2020.1767411","DOIUrl":null,"url":null,"abstract":"ABSTRACT In a lattice population model where individuals evolve as subcritical branching random walks subject to external immigration, the cumulants are estimated and the existence of the steady state is proved. The resulting dynamics are Lyapunov stable in that their qualitative behavior does not change under suitable perturbations of the main parameters of the model. An explicit formula of the limit distribution is derived in the solvable case of no birth. Monte Carlo simulation shows the limit distribution in the solvable case.","PeriodicalId":49859,"journal":{"name":"Mathematical Population Studies","volume":"28 1","pages":"63 - 80"},"PeriodicalIF":1.4000,"publicationDate":"2018-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08898480.2020.1767411","citationCount":"5","resultStr":"{\"title\":\"Steady states of lattice population models with immigration\",\"authors\":\"E. Chernousova, Yaqin Feng, O. Hryniv, S. Molchanov, Joseph Whitmeyer\",\"doi\":\"10.1080/08898480.2020.1767411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In a lattice population model where individuals evolve as subcritical branching random walks subject to external immigration, the cumulants are estimated and the existence of the steady state is proved. The resulting dynamics are Lyapunov stable in that their qualitative behavior does not change under suitable perturbations of the main parameters of the model. An explicit formula of the limit distribution is derived in the solvable case of no birth. Monte Carlo simulation shows the limit distribution in the solvable case.\",\"PeriodicalId\":49859,\"journal\":{\"name\":\"Mathematical Population Studies\",\"volume\":\"28 1\",\"pages\":\"63 - 80\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2018-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/08898480.2020.1767411\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Population Studies\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1080/08898480.2020.1767411\",\"RegionNum\":3,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEMOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Population Studies","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1080/08898480.2020.1767411","RegionNum":3,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEMOGRAPHY","Score":null,"Total":0}
引用次数: 5

摘要

摘要在一个受外来移民影响,个体以亚临界分支随机游动形式进化的格群模型中,估计了累积量,并证明了稳态的存在性。所得到的动力学是李雅普诺夫稳定的,即在模型主要参数的适当扰动下,它们的定性行为不会改变。导出了无生育可解情况下极限分布的显式公式。蒙特卡罗模拟显示了在可解情况下的极限分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steady states of lattice population models with immigration
ABSTRACT In a lattice population model where individuals evolve as subcritical branching random walks subject to external immigration, the cumulants are estimated and the existence of the steady state is proved. The resulting dynamics are Lyapunov stable in that their qualitative behavior does not change under suitable perturbations of the main parameters of the model. An explicit formula of the limit distribution is derived in the solvable case of no birth. Monte Carlo simulation shows the limit distribution in the solvable case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Population Studies
Mathematical Population Studies 数学-数学跨学科应用
CiteScore
3.20
自引率
11.10%
发文量
7
审稿时长
>12 weeks
期刊介绍: Mathematical Population Studies publishes carefully selected research papers in the mathematical and statistical study of populations. The journal is strongly interdisciplinary and invites contributions by mathematicians, demographers, (bio)statisticians, sociologists, economists, biologists, epidemiologists, actuaries, geographers, and others who are interested in the mathematical formulation of population-related questions. The scope covers both theoretical and empirical work. Manuscripts should be sent to Manuscript central for review. The editor-in-chief has final say on the suitability for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信