Ramesh Kumar Vobulapuram, Javid Basha Shaik, P. Venkatramana, D. Mekala, Ujwala Lingayath
{"title":"双层石墨烯纳米带隧道场效应晶体管的设计","authors":"Ramesh Kumar Vobulapuram, Javid Basha Shaik, P. Venkatramana, D. Mekala, Ujwala Lingayath","doi":"10.1108/cw-05-2020-0079","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this paper is to design novel tunnel field effect transistor (TFET) using graphene nanoribbons (GNRs).\n\n\nDesign/methodology/approach\nTo design the proposed TFET, the bilayer GNRs (BLGNRs) have been used as the channel material. The BLGNR-TFET is designed in QuantumATK, depending on 2-D Poisson’s equation and non-equilibrium Green’s function (NEGF) formalism.\n\n\nFindings\nThe performance of the proposed BLGNR-TFET is investigated in terms of current and voltage (I-V) characteristics and transconductance. Moreover, the proposed device performance is compared with the monolayer GNR-TFET (MLGNR-TFET). From the simulation results, it is investigated that the BLGNR-TFET shows high current and gain over the MLGNR-TFET.\n\n\nOriginality/value\nThis paper presents a new technique to design GNR-based TFET for future low power very large-scale integration (VLSI) devices.\n","PeriodicalId":50693,"journal":{"name":"Circuit World","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Design of bilayer graphene nanoribbon tunnel field effect transistor\",\"authors\":\"Ramesh Kumar Vobulapuram, Javid Basha Shaik, P. Venkatramana, D. Mekala, Ujwala Lingayath\",\"doi\":\"10.1108/cw-05-2020-0079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe purpose of this paper is to design novel tunnel field effect transistor (TFET) using graphene nanoribbons (GNRs).\\n\\n\\nDesign/methodology/approach\\nTo design the proposed TFET, the bilayer GNRs (BLGNRs) have been used as the channel material. The BLGNR-TFET is designed in QuantumATK, depending on 2-D Poisson’s equation and non-equilibrium Green’s function (NEGF) formalism.\\n\\n\\nFindings\\nThe performance of the proposed BLGNR-TFET is investigated in terms of current and voltage (I-V) characteristics and transconductance. Moreover, the proposed device performance is compared with the monolayer GNR-TFET (MLGNR-TFET). From the simulation results, it is investigated that the BLGNR-TFET shows high current and gain over the MLGNR-TFET.\\n\\n\\nOriginality/value\\nThis paper presents a new technique to design GNR-based TFET for future low power very large-scale integration (VLSI) devices.\\n\",\"PeriodicalId\":50693,\"journal\":{\"name\":\"Circuit World\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circuit World\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/cw-05-2020-0079\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuit World","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/cw-05-2020-0079","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design of bilayer graphene nanoribbon tunnel field effect transistor
Purpose
The purpose of this paper is to design novel tunnel field effect transistor (TFET) using graphene nanoribbons (GNRs).
Design/methodology/approach
To design the proposed TFET, the bilayer GNRs (BLGNRs) have been used as the channel material. The BLGNR-TFET is designed in QuantumATK, depending on 2-D Poisson’s equation and non-equilibrium Green’s function (NEGF) formalism.
Findings
The performance of the proposed BLGNR-TFET is investigated in terms of current and voltage (I-V) characteristics and transconductance. Moreover, the proposed device performance is compared with the monolayer GNR-TFET (MLGNR-TFET). From the simulation results, it is investigated that the BLGNR-TFET shows high current and gain over the MLGNR-TFET.
Originality/value
This paper presents a new technique to design GNR-based TFET for future low power very large-scale integration (VLSI) devices.
期刊介绍:
Circuit World is a platform for state of the art, technical papers and editorials in the areas of electronics circuit, component, assembly, and product design, manufacture, test, and use, including quality, reliability and safety. The journal comprises the multidisciplinary study of the various theories, methodologies, technologies, processes and applications relating to todays and future electronics. Circuit World provides a comprehensive and authoritative information source for research, application and current awareness purposes.
Circuit World covers a broad range of topics, including:
• Circuit theory, design methodology, analysis and simulation
• Digital, analog, microwave and optoelectronic integrated circuits
• Semiconductors, passives, connectors and sensors
• Electronic packaging of components, assemblies and products
• PCB design technologies and processes (controlled impedance, high-speed PCBs, laminates and lamination, laser processes and drilling, moulded interconnect devices, multilayer boards, optical PCBs, single- and double-sided boards, soldering and solderable finishes)
• Design for X (including manufacturability, quality, reliability, maintainability, sustainment, safety, reuse, disposal)
• Internet of Things (IoT).