(k, k + 1)-三对角矩阵的双对角化

IF 1 Q2 MATHEMATICS
S. Takahira, T. Sogabe, T. Usuda
{"title":"(k, k + 1)-三对角矩阵的双对角化","authors":"S. Takahira, T. Sogabe, T. Usuda","doi":"10.1515/SPMA-2019-0002","DOIUrl":null,"url":null,"abstract":"Abstract In this paper,we present the bidiagonalization of n-by-n (k, k+1)-tridiagonal matriceswhen n < 2k. Moreover,we show that the determinant of an n-by-n (k, k+1)-tridiagonal matrix is the product of the diagonal elements and the eigenvalues of the matrix are the diagonal elements. This paper is related to the fast block diagonalization algorithm using the permutation matrix from [T. Sogabe and M. El-Mikkawy, Appl. Math. Comput., 218, (2011), 2740-2743] and [A. Ohashi, T. Sogabe, and T. S. Usuda, Int. J. Pure and App. Math., 106, (2016), 513-523].","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"7 1","pages":"20 - 26"},"PeriodicalIF":1.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/SPMA-2019-0002","citationCount":"14","resultStr":"{\"title\":\"Bidiagonalization of (k, k + 1)-tridiagonal matrices\",\"authors\":\"S. Takahira, T. Sogabe, T. Usuda\",\"doi\":\"10.1515/SPMA-2019-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper,we present the bidiagonalization of n-by-n (k, k+1)-tridiagonal matriceswhen n < 2k. Moreover,we show that the determinant of an n-by-n (k, k+1)-tridiagonal matrix is the product of the diagonal elements and the eigenvalues of the matrix are the diagonal elements. This paper is related to the fast block diagonalization algorithm using the permutation matrix from [T. Sogabe and M. El-Mikkawy, Appl. Math. Comput., 218, (2011), 2740-2743] and [A. Ohashi, T. Sogabe, and T. S. Usuda, Int. J. Pure and App. Math., 106, (2016), 513-523].\",\"PeriodicalId\":43276,\"journal\":{\"name\":\"Special Matrices\",\"volume\":\"7 1\",\"pages\":\"20 - 26\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/SPMA-2019-0002\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Matrices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/SPMA-2019-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/SPMA-2019-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 14

摘要

摘要本文给出了当n < 2k时n × n (k, k+1)-三对角矩阵的双对角化。此外,我们证明了n × n (k, k+1)-三对角矩阵的行列式是对角元素的乘积,并且该矩阵的特征值是对角元素。本文研究了基于[T]中的置换矩阵的快速块对角化算法。Sogabe和M. El-Mikkawy,苹果公司。数学。第一版。[j] .农业工程学报,2011,27(2):444 - 444。Ohashi, T. Sogabe和T. S. Usuda, Int。纯粹与应用。数学。[j].农业工程学报,2016,513-523。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bidiagonalization of (k, k + 1)-tridiagonal matrices
Abstract In this paper,we present the bidiagonalization of n-by-n (k, k+1)-tridiagonal matriceswhen n < 2k. Moreover,we show that the determinant of an n-by-n (k, k+1)-tridiagonal matrix is the product of the diagonal elements and the eigenvalues of the matrix are the diagonal elements. This paper is related to the fast block diagonalization algorithm using the permutation matrix from [T. Sogabe and M. El-Mikkawy, Appl. Math. Comput., 218, (2011), 2740-2743] and [A. Ohashi, T. Sogabe, and T. S. Usuda, Int. J. Pure and App. Math., 106, (2016), 513-523].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Special Matrices
Special Matrices MATHEMATICS-
CiteScore
1.10
自引率
20.00%
发文量
14
审稿时长
8 weeks
期刊介绍: Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信