时间相关的量子微扰在半经典状态下是均匀的

IF 1.2 2区 数学 Q1 MATHEMATICS
F. Golse, T. Paul
{"title":"时间相关的量子微扰在半经典状态下是均匀的","authors":"F. Golse, T. Paul","doi":"10.1512/iumj.2023.72.9363","DOIUrl":null,"url":null,"abstract":"We present a time dependent quantum perturbation result, uniform in the Planck constant for potential whose gradient is bounded a.e..We show also that the classical limit of the perturbed quantum dynamics remains in a tubular neighborhood of the classical unperturbed one, the size of this neighborhood being of the order of the square root of the size of the perturbation. We treat both Schr\\\"odinger and von Neumann-Heisenberg equations.","PeriodicalId":50369,"journal":{"name":"Indiana University Mathematics Journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time dependent quantum perturbations uniform in the semiclassical regime\",\"authors\":\"F. Golse, T. Paul\",\"doi\":\"10.1512/iumj.2023.72.9363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a time dependent quantum perturbation result, uniform in the Planck constant for potential whose gradient is bounded a.e..We show also that the classical limit of the perturbed quantum dynamics remains in a tubular neighborhood of the classical unperturbed one, the size of this neighborhood being of the order of the square root of the size of the perturbation. We treat both Schr\\\\\\\"odinger and von Neumann-Heisenberg equations.\",\"PeriodicalId\":50369,\"journal\":{\"name\":\"Indiana University Mathematics Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indiana University Mathematics Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1512/iumj.2023.72.9363\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indiana University Mathematics Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1512/iumj.2023.72.9363","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了一个随时间变化的量子扰动结果,对于梯度有界的势,其普朗克常数是均匀的。我们还表明,扰动量子动力学的经典极限仍然在经典未扰动量子动力学的管状邻域中,该邻域的大小为扰动大小的平方根数量级。我们处理薛定谔方程和冯·诺伊曼-海森堡方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time dependent quantum perturbations uniform in the semiclassical regime
We present a time dependent quantum perturbation result, uniform in the Planck constant for potential whose gradient is bounded a.e..We show also that the classical limit of the perturbed quantum dynamics remains in a tubular neighborhood of the classical unperturbed one, the size of this neighborhood being of the order of the square root of the size of the perturbation. We treat both Schr\"odinger and von Neumann-Heisenberg equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
52
审稿时长
4.5 months
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信