若干保持不相交支持性质的线性算子

Q4 Mathematics
N. Eftekhari, A. Eshkaftaki
{"title":"若干保持不相交支持性质的线性算子","authors":"N. Eftekhari, A. Eshkaftaki","doi":"10.22130/SCMA.2021.115697.690","DOIUrl":null,"url":null,"abstract":"The aim of this work is to characterize all bounded linear operators $T:lpirightarrowlpi$ which preserve disjoint support property. We show that the constant coefficients of all isometries on $lpi$ are in the class of such operators, where $2neq pin [1,infty )$ and $I$ is a non-empty set. We extend preserving disjoint support property to linear operators on $mathfrak{c}_{0}(I).$ At the end, we obtain some equivalent properties of isometries on Banach spaces.","PeriodicalId":38924,"journal":{"name":"Communications in Mathematical Analysis","volume":"18 1","pages":"41-49"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Some Linear Operators Preserving Disjoint Support Property\",\"authors\":\"N. Eftekhari, A. Eshkaftaki\",\"doi\":\"10.22130/SCMA.2021.115697.690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to characterize all bounded linear operators $T:lpirightarrowlpi$ which preserve disjoint support property. We show that the constant coefficients of all isometries on $lpi$ are in the class of such operators, where $2neq pin [1,infty )$ and $I$ is a non-empty set. We extend preserving disjoint support property to linear operators on $mathfrak{c}_{0}(I).$ At the end, we obtain some equivalent properties of isometries on Banach spaces.\",\"PeriodicalId\":38924,\"journal\":{\"name\":\"Communications in Mathematical Analysis\",\"volume\":\"18 1\",\"pages\":\"41-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22130/SCMA.2021.115697.690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22130/SCMA.2021.115697.690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目的是刻画所有保持不相交支持性质的有界线性算子$T:lpirightarrowlpi$。我们证明了$lpi$上所有等距的常系数都在这类算子中,其中$2neq-pin[1,infty)$和$I$是非空集{c}_{0}(I).$最后,我们得到了Banach空间上等距的一些等价性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Some Linear Operators Preserving Disjoint Support Property
The aim of this work is to characterize all bounded linear operators $T:lpirightarrowlpi$ which preserve disjoint support property. We show that the constant coefficients of all isometries on $lpi$ are in the class of such operators, where $2neq pin [1,infty )$ and $I$ is a non-empty set. We extend preserving disjoint support property to linear operators on $mathfrak{c}_{0}(I).$ At the end, we obtain some equivalent properties of isometries on Banach spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematical Analysis
Communications in Mathematical Analysis Mathematics-Applied Mathematics
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信