{"title":"闭子格式的广义第二主定理","authors":"L. Wang, T. Cao, Hongzhe Cao","doi":"10.4064/ap220604-10-11","DOIUrl":null,"url":null,"abstract":"Let Y1, . . . , Yq be closed subschemes located in l-subgeneral position with index κ in complex projective variety X of dimension n. Let A be an ample Cartier divisor on X. We obtain that if a holomorphic curve f : C → X is Zariski-dense, then for every ǫ > 0, q","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A generalized Second Main Theorem for closed subschemes\",\"authors\":\"L. Wang, T. Cao, Hongzhe Cao\",\"doi\":\"10.4064/ap220604-10-11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let Y1, . . . , Yq be closed subschemes located in l-subgeneral position with index κ in complex projective variety X of dimension n. Let A be an ample Cartier divisor on X. We obtain that if a holomorphic curve f : C → X is Zariski-dense, then for every ǫ > 0, q\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/ap220604-10-11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/ap220604-10-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A generalized Second Main Theorem for closed subschemes
Let Y1, . . . , Yq be closed subschemes located in l-subgeneral position with index κ in complex projective variety X of dimension n. Let A be an ample Cartier divisor on X. We obtain that if a holomorphic curve f : C → X is Zariski-dense, then for every ǫ > 0, q