Yahui Jiang, Taiyong Chen, Jianjun Zhang, M. Squassina, N. Almousa
{"title":"具有chen - simons规范场的Schrödinger系统的基态","authors":"Yahui Jiang, Taiyong Chen, Jianjun Zhang, M. Squassina, N. Almousa","doi":"10.1515/ans-2023-0086","DOIUrl":null,"url":null,"abstract":"Abstract We are concerned with the following coupled nonlinear Schrödinger system: − Δ u + u + ∫ ∣ x ∣ ∞ h ( s ) s u 2 ( s ) d s + h 2 ( ∣ x ∣ ) ∣ x ∣ 2 u = ∣ u ∣ 2 p − 2 u + b ∣ v ∣ p ∣ u ∣ p − 2 u , x ∈ R 2 , − Δ v + ω v + ∫ ∣ x ∣ ∞ g ( s ) s v 2 ( s ) d s + g 2 ( ∣ x ∣ ) ∣ x ∣ 2 v = ∣ v ∣ 2 p − 2 v + b ∣ u ∣ p ∣ v ∣ p − 2 v , x ∈ R 2 , \\left\\{\\begin{array}{l}-\\Delta u+u+\\left(\\underset{| x| }{\\overset{\\infty }{\\displaystyle \\int }}\\frac{h\\left(s)}{s}{u}^{2}\\left(s){\\rm{d}}s+\\frac{{h}^{2}\\left(| x| )}{{| x| }^{2}}\\right)u={| u| }^{2p-2}u+b{| v| }^{p}{| u| }^{p-2}u,\\hspace{1em}x\\in {{\\mathbb{R}}}^{2},\\hspace{1.0em}\\\\ -\\Delta v+\\omega v+\\left(\\underset{| x| }{\\overset{\\infty }{\\displaystyle \\int }}\\frac{g\\left(s)}{s}{v}^{2}\\left(s){\\rm{d}}s+\\frac{{g}^{2}\\left(| x| )}{{| x| }^{2}}\\right)v={| v| }^{2p-2}v+b{| u| }^{p}{| v| }^{p-2}v,\\hspace{1em}x\\in {{\\mathbb{R}}}^{2},\\hspace{1.0em}\\end{array}\\right. where ω , b > 0 \\omega ,b\\gt 0 , p > 1 p\\gt 1 . By virtue of the variational approach, we show the existence of nontrivial ground-state solutions depending on the parameters involved. Precisely, the aforementioned system admits a positive ground-state solution if p > 3 p\\gt 3 and b > 0 b\\gt 0 large enough or if p ∈ ( 2 , 3 ] p\\in \\left(2,3] and b > 0 b\\gt 0 small.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground states of Schrödinger systems with the Chern-Simons gauge fields\",\"authors\":\"Yahui Jiang, Taiyong Chen, Jianjun Zhang, M. Squassina, N. Almousa\",\"doi\":\"10.1515/ans-2023-0086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We are concerned with the following coupled nonlinear Schrödinger system: − Δ u + u + ∫ ∣ x ∣ ∞ h ( s ) s u 2 ( s ) d s + h 2 ( ∣ x ∣ ) ∣ x ∣ 2 u = ∣ u ∣ 2 p − 2 u + b ∣ v ∣ p ∣ u ∣ p − 2 u , x ∈ R 2 , − Δ v + ω v + ∫ ∣ x ∣ ∞ g ( s ) s v 2 ( s ) d s + g 2 ( ∣ x ∣ ) ∣ x ∣ 2 v = ∣ v ∣ 2 p − 2 v + b ∣ u ∣ p ∣ v ∣ p − 2 v , x ∈ R 2 , \\\\left\\\\{\\\\begin{array}{l}-\\\\Delta u+u+\\\\left(\\\\underset{| x| }{\\\\overset{\\\\infty }{\\\\displaystyle \\\\int }}\\\\frac{h\\\\left(s)}{s}{u}^{2}\\\\left(s){\\\\rm{d}}s+\\\\frac{{h}^{2}\\\\left(| x| )}{{| x| }^{2}}\\\\right)u={| u| }^{2p-2}u+b{| v| }^{p}{| u| }^{p-2}u,\\\\hspace{1em}x\\\\in {{\\\\mathbb{R}}}^{2},\\\\hspace{1.0em}\\\\\\\\ -\\\\Delta v+\\\\omega v+\\\\left(\\\\underset{| x| }{\\\\overset{\\\\infty }{\\\\displaystyle \\\\int }}\\\\frac{g\\\\left(s)}{s}{v}^{2}\\\\left(s){\\\\rm{d}}s+\\\\frac{{g}^{2}\\\\left(| x| )}{{| x| }^{2}}\\\\right)v={| v| }^{2p-2}v+b{| u| }^{p}{| v| }^{p-2}v,\\\\hspace{1em}x\\\\in {{\\\\mathbb{R}}}^{2},\\\\hspace{1.0em}\\\\end{array}\\\\right. where ω , b > 0 \\\\omega ,b\\\\gt 0 , p > 1 p\\\\gt 1 . By virtue of the variational approach, we show the existence of nontrivial ground-state solutions depending on the parameters involved. Precisely, the aforementioned system admits a positive ground-state solution if p > 3 p\\\\gt 3 and b > 0 b\\\\gt 0 large enough or if p ∈ ( 2 , 3 ] p\\\\in \\\\left(2,3] and b > 0 b\\\\gt 0 small.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2023-0086\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0086","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Ground states of Schrödinger systems with the Chern-Simons gauge fields
Abstract We are concerned with the following coupled nonlinear Schrödinger system: − Δ u + u + ∫ ∣ x ∣ ∞ h ( s ) s u 2 ( s ) d s + h 2 ( ∣ x ∣ ) ∣ x ∣ 2 u = ∣ u ∣ 2 p − 2 u + b ∣ v ∣ p ∣ u ∣ p − 2 u , x ∈ R 2 , − Δ v + ω v + ∫ ∣ x ∣ ∞ g ( s ) s v 2 ( s ) d s + g 2 ( ∣ x ∣ ) ∣ x ∣ 2 v = ∣ v ∣ 2 p − 2 v + b ∣ u ∣ p ∣ v ∣ p − 2 v , x ∈ R 2 , \left\{\begin{array}{l}-\Delta u+u+\left(\underset{| x| }{\overset{\infty }{\displaystyle \int }}\frac{h\left(s)}{s}{u}^{2}\left(s){\rm{d}}s+\frac{{h}^{2}\left(| x| )}{{| x| }^{2}}\right)u={| u| }^{2p-2}u+b{| v| }^{p}{| u| }^{p-2}u,\hspace{1em}x\in {{\mathbb{R}}}^{2},\hspace{1.0em}\\ -\Delta v+\omega v+\left(\underset{| x| }{\overset{\infty }{\displaystyle \int }}\frac{g\left(s)}{s}{v}^{2}\left(s){\rm{d}}s+\frac{{g}^{2}\left(| x| )}{{| x| }^{2}}\right)v={| v| }^{2p-2}v+b{| u| }^{p}{| v| }^{p-2}v,\hspace{1em}x\in {{\mathbb{R}}}^{2},\hspace{1.0em}\end{array}\right. where ω , b > 0 \omega ,b\gt 0 , p > 1 p\gt 1 . By virtue of the variational approach, we show the existence of nontrivial ground-state solutions depending on the parameters involved. Precisely, the aforementioned system admits a positive ground-state solution if p > 3 p\gt 3 and b > 0 b\gt 0 large enough or if p ∈ ( 2 , 3 ] p\in \left(2,3] and b > 0 b\gt 0 small.
期刊介绍:
Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.