具有chen - simons规范场的Schrödinger系统的基态

IF 2.1 2区 数学 Q1 MATHEMATICS
Yahui Jiang, Taiyong Chen, Jianjun Zhang, M. Squassina, N. Almousa
{"title":"具有chen - simons规范场的Schrödinger系统的基态","authors":"Yahui Jiang, Taiyong Chen, Jianjun Zhang, M. Squassina, N. Almousa","doi":"10.1515/ans-2023-0086","DOIUrl":null,"url":null,"abstract":"Abstract We are concerned with the following coupled nonlinear Schrödinger system: − Δ u + u + ∫ ∣ x ∣ ∞ h ( s ) s u 2 ( s ) d s + h 2 ( ∣ x ∣ ) ∣ x ∣ 2 u = ∣ u ∣ 2 p − 2 u + b ∣ v ∣ p ∣ u ∣ p − 2 u , x ∈ R 2 , − Δ v + ω v + ∫ ∣ x ∣ ∞ g ( s ) s v 2 ( s ) d s + g 2 ( ∣ x ∣ ) ∣ x ∣ 2 v = ∣ v ∣ 2 p − 2 v + b ∣ u ∣ p ∣ v ∣ p − 2 v , x ∈ R 2 , \\left\\{\\begin{array}{l}-\\Delta u+u+\\left(\\underset{| x| }{\\overset{\\infty }{\\displaystyle \\int }}\\frac{h\\left(s)}{s}{u}^{2}\\left(s){\\rm{d}}s+\\frac{{h}^{2}\\left(| x| )}{{| x| }^{2}}\\right)u={| u| }^{2p-2}u+b{| v| }^{p}{| u| }^{p-2}u,\\hspace{1em}x\\in {{\\mathbb{R}}}^{2},\\hspace{1.0em}\\\\ -\\Delta v+\\omega v+\\left(\\underset{| x| }{\\overset{\\infty }{\\displaystyle \\int }}\\frac{g\\left(s)}{s}{v}^{2}\\left(s){\\rm{d}}s+\\frac{{g}^{2}\\left(| x| )}{{| x| }^{2}}\\right)v={| v| }^{2p-2}v+b{| u| }^{p}{| v| }^{p-2}v,\\hspace{1em}x\\in {{\\mathbb{R}}}^{2},\\hspace{1.0em}\\end{array}\\right. where ω , b > 0 \\omega ,b\\gt 0 , p > 1 p\\gt 1 . By virtue of the variational approach, we show the existence of nontrivial ground-state solutions depending on the parameters involved. Precisely, the aforementioned system admits a positive ground-state solution if p > 3 p\\gt 3 and b > 0 b\\gt 0 large enough or if p ∈ ( 2 , 3 ] p\\in \\left(2,3] and b > 0 b\\gt 0 small.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ground states of Schrödinger systems with the Chern-Simons gauge fields\",\"authors\":\"Yahui Jiang, Taiyong Chen, Jianjun Zhang, M. Squassina, N. Almousa\",\"doi\":\"10.1515/ans-2023-0086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We are concerned with the following coupled nonlinear Schrödinger system: − Δ u + u + ∫ ∣ x ∣ ∞ h ( s ) s u 2 ( s ) d s + h 2 ( ∣ x ∣ ) ∣ x ∣ 2 u = ∣ u ∣ 2 p − 2 u + b ∣ v ∣ p ∣ u ∣ p − 2 u , x ∈ R 2 , − Δ v + ω v + ∫ ∣ x ∣ ∞ g ( s ) s v 2 ( s ) d s + g 2 ( ∣ x ∣ ) ∣ x ∣ 2 v = ∣ v ∣ 2 p − 2 v + b ∣ u ∣ p ∣ v ∣ p − 2 v , x ∈ R 2 , \\\\left\\\\{\\\\begin{array}{l}-\\\\Delta u+u+\\\\left(\\\\underset{| x| }{\\\\overset{\\\\infty }{\\\\displaystyle \\\\int }}\\\\frac{h\\\\left(s)}{s}{u}^{2}\\\\left(s){\\\\rm{d}}s+\\\\frac{{h}^{2}\\\\left(| x| )}{{| x| }^{2}}\\\\right)u={| u| }^{2p-2}u+b{| v| }^{p}{| u| }^{p-2}u,\\\\hspace{1em}x\\\\in {{\\\\mathbb{R}}}^{2},\\\\hspace{1.0em}\\\\\\\\ -\\\\Delta v+\\\\omega v+\\\\left(\\\\underset{| x| }{\\\\overset{\\\\infty }{\\\\displaystyle \\\\int }}\\\\frac{g\\\\left(s)}{s}{v}^{2}\\\\left(s){\\\\rm{d}}s+\\\\frac{{g}^{2}\\\\left(| x| )}{{| x| }^{2}}\\\\right)v={| v| }^{2p-2}v+b{| u| }^{p}{| v| }^{p-2}v,\\\\hspace{1em}x\\\\in {{\\\\mathbb{R}}}^{2},\\\\hspace{1.0em}\\\\end{array}\\\\right. where ω , b > 0 \\\\omega ,b\\\\gt 0 , p > 1 p\\\\gt 1 . By virtue of the variational approach, we show the existence of nontrivial ground-state solutions depending on the parameters involved. Precisely, the aforementioned system admits a positive ground-state solution if p > 3 p\\\\gt 3 and b > 0 b\\\\gt 0 large enough or if p ∈ ( 2 , 3 ] p\\\\in \\\\left(2,3] and b > 0 b\\\\gt 0 small.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2023-0086\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2023-0086","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们关注以下耦合非线性Schrödinger系统:−Δu+u+Ş,−Δv+ωv+ŞŞxŞ∞g(s)s v 2(s)d s+g 2{l}-\Δu+u+\left^{2p-2}u+b{|v|}^{p}{|u|}^{p-2}u,\ hspace{1em}x\在{\mathbb{R}}^{2}中,\ hspace{1.0em}\\-\Delta v+\omega v+\left^{2p-2}v+b{|u|}^{p}{|v|}^{p-2}v,\ hspace{1em}x\在{\mathbb{R}}^{2}中,\hspace{1.0em}\end{array}\right。其中ω,b>0\omega,b\gt 0,p>1 p\gt 1。利用变分方法,我们证明了非平凡基态解的存在性,这取决于所涉及的参数。准确地说,如果p>3 p\gt 3和b>0 b\gt 0足够大,或者如果p∈(2,3]p\in\left(2,3]和b>0b \gt 0小,则上述系统允许正基态解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ground states of Schrödinger systems with the Chern-Simons gauge fields
Abstract We are concerned with the following coupled nonlinear Schrödinger system: − Δ u + u + ∫ ∣ x ∣ ∞ h ( s ) s u 2 ( s ) d s + h 2 ( ∣ x ∣ ) ∣ x ∣ 2 u = ∣ u ∣ 2 p − 2 u + b ∣ v ∣ p ∣ u ∣ p − 2 u , x ∈ R 2 , − Δ v + ω v + ∫ ∣ x ∣ ∞ g ( s ) s v 2 ( s ) d s + g 2 ( ∣ x ∣ ) ∣ x ∣ 2 v = ∣ v ∣ 2 p − 2 v + b ∣ u ∣ p ∣ v ∣ p − 2 v , x ∈ R 2 , \left\{\begin{array}{l}-\Delta u+u+\left(\underset{| x| }{\overset{\infty }{\displaystyle \int }}\frac{h\left(s)}{s}{u}^{2}\left(s){\rm{d}}s+\frac{{h}^{2}\left(| x| )}{{| x| }^{2}}\right)u={| u| }^{2p-2}u+b{| v| }^{p}{| u| }^{p-2}u,\hspace{1em}x\in {{\mathbb{R}}}^{2},\hspace{1.0em}\\ -\Delta v+\omega v+\left(\underset{| x| }{\overset{\infty }{\displaystyle \int }}\frac{g\left(s)}{s}{v}^{2}\left(s){\rm{d}}s+\frac{{g}^{2}\left(| x| )}{{| x| }^{2}}\right)v={| v| }^{2p-2}v+b{| u| }^{p}{| v| }^{p-2}v,\hspace{1em}x\in {{\mathbb{R}}}^{2},\hspace{1.0em}\end{array}\right. where ω , b > 0 \omega ,b\gt 0 , p > 1 p\gt 1 . By virtue of the variational approach, we show the existence of nontrivial ground-state solutions depending on the parameters involved. Precisely, the aforementioned system admits a positive ground-state solution if p > 3 p\gt 3 and b > 0 b\gt 0 large enough or if p ∈ ( 2 , 3 ] p\in \left(2,3] and b > 0 b\gt 0 small.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信