L^{\beta}$-范数中广义双轴对称势的逼近

IF 1 Q1 MATHEMATICS
Devendra Kumar
{"title":"L^{\\beta}$-范数中广义双轴对称势的逼近","authors":"Devendra Kumar","doi":"10.29020/nybg.ejpam.v16i3.4815","DOIUrl":null,"url":null,"abstract":"Let $F$ be a real valued generalized biaxisymmetric potential (GBASP) in $L^{\\beta}$ on $S_{R}$, the open sphere of radius $R$ about the origin. In this paper we have obtained the necessary and sufficient conditions on the rate of decrease of a sequence of best harmonic polynomial approximates to $F$ such that $F$ is harmonically continues as an entire function GBASP and determine their $(p,q)$-order and generalized $(p,q)$-type with respect to proximate order $\\rho(r)$.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximation of Generalized Biaxisymmetric Potentials in $L^{\\\\beta}$-norm\",\"authors\":\"Devendra Kumar\",\"doi\":\"10.29020/nybg.ejpam.v16i3.4815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $F$ be a real valued generalized biaxisymmetric potential (GBASP) in $L^{\\\\beta}$ on $S_{R}$, the open sphere of radius $R$ about the origin. In this paper we have obtained the necessary and sufficient conditions on the rate of decrease of a sequence of best harmonic polynomial approximates to $F$ such that $F$ is harmonically continues as an entire function GBASP and determine their $(p,q)$-order and generalized $(p,q)$-type with respect to proximate order $\\\\rho(r)$.\",\"PeriodicalId\":51807,\"journal\":{\"name\":\"European Journal of Pure and Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v16i3.4815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i3.4815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$F$为关于原点的半径为$R$的开球$L^{\beta}$上$S_{R}$上的实值广义双轴对称势(GBASP)。本文得到了一组最优调和多项式逼近$F$的减量率的充要条件,使得$F$作为一个整体函数GBASP是调和连续的,并确定了它们相对于近似阶$\rho(r)$的$(p,q)$ -阶和广义$(p,q)$型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximation of Generalized Biaxisymmetric Potentials in $L^{\beta}$-norm
Let $F$ be a real valued generalized biaxisymmetric potential (GBASP) in $L^{\beta}$ on $S_{R}$, the open sphere of radius $R$ about the origin. In this paper we have obtained the necessary and sufficient conditions on the rate of decrease of a sequence of best harmonic polynomial approximates to $F$ such that $F$ is harmonically continues as an entire function GBASP and determine their $(p,q)$-order and generalized $(p,q)$-type with respect to proximate order $\rho(r)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信