C. Aciti, R. Cayssials, E. Ferro, J. Urriza, J. Orozco
{"title":"网络物理应用中的嵌入式实时系统:一种频域分析方法","authors":"C. Aciti, R. Cayssials, E. Ferro, J. Urriza, J. Orozco","doi":"10.1080/03081079.2019.1703701","DOIUrl":null,"url":null,"abstract":"ABSTRACT Cyber-Physical Systems (CPSs) use sensors and actuators to interface between an embedded system and the physical world. The time-continuous domain of the physical world should be periodically sampled by real-time tasks in an embedded system to preserve its dynamic properties in the time-discrete domain. Because the task execution pattern may vary during runtime, a jitter in the execution of a real-time task hinders the periodicity of its execution. The effects of jitters in CPSs are difficult to determine when the premises of the Nyquist-Shannon sampling theorem are not satisfied. This paper proposes using frequency domain analysis to determine the perturbations that a real-time system produces on real-world applications; accordingly, the paper defines both a design and an evaluation criterion for real-time systems in CPS applications. The Fixed Priority discipline is analysed through simulations to conclude that no special design techniques are required when the utilization factors are less than 20%.","PeriodicalId":50322,"journal":{"name":"International Journal of General Systems","volume":"49 1","pages":"201 - 221"},"PeriodicalIF":2.4000,"publicationDate":"2020-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/03081079.2019.1703701","citationCount":"2","resultStr":"{\"title\":\"Embedded real-time systems in cyber-physical applications: a frequency domain analysis methodology\",\"authors\":\"C. Aciti, R. Cayssials, E. Ferro, J. Urriza, J. Orozco\",\"doi\":\"10.1080/03081079.2019.1703701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Cyber-Physical Systems (CPSs) use sensors and actuators to interface between an embedded system and the physical world. The time-continuous domain of the physical world should be periodically sampled by real-time tasks in an embedded system to preserve its dynamic properties in the time-discrete domain. Because the task execution pattern may vary during runtime, a jitter in the execution of a real-time task hinders the periodicity of its execution. The effects of jitters in CPSs are difficult to determine when the premises of the Nyquist-Shannon sampling theorem are not satisfied. This paper proposes using frequency domain analysis to determine the perturbations that a real-time system produces on real-world applications; accordingly, the paper defines both a design and an evaluation criterion for real-time systems in CPS applications. The Fixed Priority discipline is analysed through simulations to conclude that no special design techniques are required when the utilization factors are less than 20%.\",\"PeriodicalId\":50322,\"journal\":{\"name\":\"International Journal of General Systems\",\"volume\":\"49 1\",\"pages\":\"201 - 221\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2020-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/03081079.2019.1703701\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of General Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/03081079.2019.1703701\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of General Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/03081079.2019.1703701","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Embedded real-time systems in cyber-physical applications: a frequency domain analysis methodology
ABSTRACT Cyber-Physical Systems (CPSs) use sensors and actuators to interface between an embedded system and the physical world. The time-continuous domain of the physical world should be periodically sampled by real-time tasks in an embedded system to preserve its dynamic properties in the time-discrete domain. Because the task execution pattern may vary during runtime, a jitter in the execution of a real-time task hinders the periodicity of its execution. The effects of jitters in CPSs are difficult to determine when the premises of the Nyquist-Shannon sampling theorem are not satisfied. This paper proposes using frequency domain analysis to determine the perturbations that a real-time system produces on real-world applications; accordingly, the paper defines both a design and an evaluation criterion for real-time systems in CPS applications. The Fixed Priority discipline is analysed through simulations to conclude that no special design techniques are required when the utilization factors are less than 20%.
期刊介绍:
International Journal of General Systems is a periodical devoted primarily to the publication of original research contributions to system science, basic as well as applied. However, relevant survey articles, invited book reviews, bibliographies, and letters to the editor are also published.
The principal aim of the journal is to promote original systems ideas (concepts, principles, methods, theoretical or experimental results, etc.) that are broadly applicable to various kinds of systems. The term “general system” in the name of the journal is intended to indicate this aim–the orientation to systems ideas that have a general applicability. Typical subject areas covered by the journal include: uncertainty and randomness; fuzziness and imprecision; information; complexity; inductive and deductive reasoning about systems; learning; systems analysis and design; and theoretical as well as experimental knowledge regarding various categories of systems. Submitted research must be well presented and must clearly state the contribution and novelty. Manuscripts dealing with particular kinds of systems which lack general applicability across a broad range of systems should be sent to journals specializing in the respective topics.