使用机器学习算法自动检测电离层类闪烁GNSS卫星振荡器异常

Y. Liu, Y. Morton
{"title":"使用机器学习算法自动检测电离层类闪烁GNSS卫星振荡器异常","authors":"Y. Liu, Y. Morton","doi":"10.1002/navi.385","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a machine-learning-based approach to automatically detect a satellite oscillator anomaly. A major challenge is to differentiate an oscillator anomaly from ionospheric scintillation. Although both scintillation and oscillator anomalies cause phase disturbances, their underlying physics are different and, therefore, show different carrier-frequency dependency. By using triple-frequency signals, distinct features are extracted from the disturbed signals and applied to the radial basis function (RBF) support vector machine (SVM) classifier to identify an oscillator anomaly. The results show that the proposed RBF SVM displays superior performance and outperforms several other classification methods. The proposed approach is applied to an extensive GNSS database to conduct automatic satellite oscillator anomaly detection. Preliminary detection results validate the effectiveness of the proposed method. On average, one-to-three satellite oscillator anomaly events are detected daily at each receiver location.","PeriodicalId":30601,"journal":{"name":"Annual of Navigation","volume":"67 1","pages":"651-662"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/navi.385","citationCount":"6","resultStr":"{\"title\":\"Automatic detection of ionospheric scintillation‐like GNSS satellite oscillator anomaly using a machine‐learning algorithm\",\"authors\":\"Y. Liu, Y. Morton\",\"doi\":\"10.1002/navi.385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a machine-learning-based approach to automatically detect a satellite oscillator anomaly. A major challenge is to differentiate an oscillator anomaly from ionospheric scintillation. Although both scintillation and oscillator anomalies cause phase disturbances, their underlying physics are different and, therefore, show different carrier-frequency dependency. By using triple-frequency signals, distinct features are extracted from the disturbed signals and applied to the radial basis function (RBF) support vector machine (SVM) classifier to identify an oscillator anomaly. The results show that the proposed RBF SVM displays superior performance and outperforms several other classification methods. The proposed approach is applied to an extensive GNSS database to conduct automatic satellite oscillator anomaly detection. Preliminary detection results validate the effectiveness of the proposed method. On average, one-to-three satellite oscillator anomaly events are detected daily at each receiver location.\",\"PeriodicalId\":30601,\"journal\":{\"name\":\"Annual of Navigation\",\"volume\":\"67 1\",\"pages\":\"651-662\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/navi.385\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual of Navigation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/navi.385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual of Navigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/navi.385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们提出了一种基于机器学习的方法来自动检测卫星振荡器异常。一个主要的挑战是区分振荡器异常和电离层闪烁。虽然闪烁和振荡器异常都会引起相位扰动,但它们的底层物理特性不同,因此表现出不同的载波频率依赖性。利用三频信号,从干扰信号中提取出明显的特征,并应用于径向基函数(RBF)支持向量机(SVM)分类器来识别振荡器异常。结果表明,所提出的RBF支持向量机具有较好的分类性能,优于其他几种分类方法。将该方法应用于广泛的GNSS数据库中,对卫星振荡器进行自动异常检测。初步检测结果验证了该方法的有效性。平均每天在每个接收机位置检测到1 - 3个卫星振荡器异常事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic detection of ionospheric scintillation‐like GNSS satellite oscillator anomaly using a machine‐learning algorithm
In this paper, we propose a machine-learning-based approach to automatically detect a satellite oscillator anomaly. A major challenge is to differentiate an oscillator anomaly from ionospheric scintillation. Although both scintillation and oscillator anomalies cause phase disturbances, their underlying physics are different and, therefore, show different carrier-frequency dependency. By using triple-frequency signals, distinct features are extracted from the disturbed signals and applied to the radial basis function (RBF) support vector machine (SVM) classifier to identify an oscillator anomaly. The results show that the proposed RBF SVM displays superior performance and outperforms several other classification methods. The proposed approach is applied to an extensive GNSS database to conduct automatic satellite oscillator anomaly detection. Preliminary detection results validate the effectiveness of the proposed method. On average, one-to-three satellite oscillator anomaly events are detected daily at each receiver location.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信