广义双参数三角函数的应用II

IF 0.7 Q3 MATHEMATICS, APPLIED
S. Takeuchi
{"title":"广义双参数三角函数的应用II","authors":"S. Takeuchi","doi":"10.7153/dea-2019-11-28","DOIUrl":null,"url":null,"abstract":"Generalized trigonometric functions (GTFs) are simple generalization of the classical trigonometric functions. GTFs are deeply related to the $p$-Laplacian, which is known as a typical nonlinear differential operator. Compared to GTFs with one parameter, there are few applications of GTFs with two parameters to differential equations. We will apply GTFs with two parameters to studies on the inviscid primitive equations of oceanic and atmospheric dynamics, new formulas of Gaussian hypergeometric functions, and the $L^q$-Lyapunov inequality for the one-dimensional $p$-Laplacian.","PeriodicalId":51863,"journal":{"name":"Differential Equations & Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of generalized trigonometric functions with two parameters II\",\"authors\":\"S. Takeuchi\",\"doi\":\"10.7153/dea-2019-11-28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalized trigonometric functions (GTFs) are simple generalization of the classical trigonometric functions. GTFs are deeply related to the $p$-Laplacian, which is known as a typical nonlinear differential operator. Compared to GTFs with one parameter, there are few applications of GTFs with two parameters to differential equations. We will apply GTFs with two parameters to studies on the inviscid primitive equations of oceanic and atmospheric dynamics, new formulas of Gaussian hypergeometric functions, and the $L^q$-Lyapunov inequality for the one-dimensional $p$-Laplacian.\",\"PeriodicalId\":51863,\"journal\":{\"name\":\"Differential Equations & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/dea-2019-11-28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/dea-2019-11-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

广义三角函数是对经典三角函数的简单推广。GTF与$p$-Laplacian算子有着深刻的联系,后者是一种典型的非线性微分算子。与单参数GTF相比,双参数GTF在微分方程中的应用较少。我们将应用具有两个参数的GTF来研究海洋和大气动力学的无粘性原始方程、高斯超几何函数的新公式以及一维$p$-Lapunov不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications of generalized trigonometric functions with two parameters II
Generalized trigonometric functions (GTFs) are simple generalization of the classical trigonometric functions. GTFs are deeply related to the $p$-Laplacian, which is known as a typical nonlinear differential operator. Compared to GTFs with one parameter, there are few applications of GTFs with two parameters to differential equations. We will apply GTFs with two parameters to studies on the inviscid primitive equations of oceanic and atmospheric dynamics, new formulas of Gaussian hypergeometric functions, and the $L^q$-Lyapunov inequality for the one-dimensional $p$-Laplacian.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信