{"title":"时变网络上的分布式动态随机逼近算法","authors":"Kewei Fu, Han-Fu Chen, Wenxiao Zhao","doi":"10.1007/s43684-021-00003-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a distributed stochastic approximation algorithm is proposed to track the dynamic root of a sum of time-varying regression functions over a network. Each agent updates its estimate by using the local observation, the dynamic information of the global root, and information received from its neighbors. Compared with similar works in optimization area, we allow the observation to be noise-corrupted, and the noise condition is much weaker. Furthermore, instead of the upper bound of the estimate error, we present the asymptotic convergence result of the algorithm. The consensus and convergence of the estimates are established. Finally, the algorithm is applied to a distributed target tracking problem and the numerical example is presented to demonstrate the performance of the algorithm.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-021-00003-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Distributed dynamic stochastic approximation algorithm over time-varying networks\",\"authors\":\"Kewei Fu, Han-Fu Chen, Wenxiao Zhao\",\"doi\":\"10.1007/s43684-021-00003-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a distributed stochastic approximation algorithm is proposed to track the dynamic root of a sum of time-varying regression functions over a network. Each agent updates its estimate by using the local observation, the dynamic information of the global root, and information received from its neighbors. Compared with similar works in optimization area, we allow the observation to be noise-corrupted, and the noise condition is much weaker. Furthermore, instead of the upper bound of the estimate error, we present the asymptotic convergence result of the algorithm. The consensus and convergence of the estimates are established. Finally, the algorithm is applied to a distributed target tracking problem and the numerical example is presented to demonstrate the performance of the algorithm.</p></div>\",\"PeriodicalId\":71187,\"journal\":{\"name\":\"自主智能系统(英文)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43684-021-00003-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自主智能系统(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43684-021-00003-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-021-00003-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed dynamic stochastic approximation algorithm over time-varying networks
In this paper, a distributed stochastic approximation algorithm is proposed to track the dynamic root of a sum of time-varying regression functions over a network. Each agent updates its estimate by using the local observation, the dynamic information of the global root, and information received from its neighbors. Compared with similar works in optimization area, we allow the observation to be noise-corrupted, and the noise condition is much weaker. Furthermore, instead of the upper bound of the estimate error, we present the asymptotic convergence result of the algorithm. The consensus and convergence of the estimates are established. Finally, the algorithm is applied to a distributed target tracking problem and the numerical example is presented to demonstrate the performance of the algorithm.