迭代和混合判别法

IF 0.6 2区 数学 Q3 MATHEMATICS
A. Dickenstein, S. Rocco, Ralph Morrison
{"title":"迭代和混合判别法","authors":"A. Dickenstein, S. Rocco, Ralph Morrison","doi":"10.4171/jca/68","DOIUrl":null,"url":null,"abstract":"We consider systems of Laurent polynomials with support on a fixed point configuration. In the non-defective case, the closure of the locus of coefficients giving a non-degenerate multiple root of the system is defined by a polynomial called the mixed discriminant. We define a related polynomial called the multivariate iterated discriminant, generalizing the classical Sch\\\"afli method for hyperdeterminants. This iterated discriminant is easier to compute and we prove that it is always divisible by the mixed discriminant. We show that tangent intersections can be computed via iteration if and only if the singular locus of a corresponding dual variety has sufficiently high codimension. We also study when point configurations corresponding to Segre-Veronese varieties and to the lattice points of planar smooth polygons, have their iterated discriminant equal to their mixed discriminant.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Iterated and mixed discriminants\",\"authors\":\"A. Dickenstein, S. Rocco, Ralph Morrison\",\"doi\":\"10.4171/jca/68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider systems of Laurent polynomials with support on a fixed point configuration. In the non-defective case, the closure of the locus of coefficients giving a non-degenerate multiple root of the system is defined by a polynomial called the mixed discriminant. We define a related polynomial called the multivariate iterated discriminant, generalizing the classical Sch\\\\\\\"afli method for hyperdeterminants. This iterated discriminant is easier to compute and we prove that it is always divisible by the mixed discriminant. We show that tangent intersections can be computed via iteration if and only if the singular locus of a corresponding dual variety has sufficiently high codimension. We also study when point configurations corresponding to Segre-Veronese varieties and to the lattice points of planar smooth polygons, have their iterated discriminant equal to their mixed discriminant.\",\"PeriodicalId\":48483,\"journal\":{\"name\":\"Journal of Combinatorial Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jca/68\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jca/68","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑在不动点配置上具有支持的洛朗多项式系统。在无缺陷情况下,给出系统非退化复根的系数轨迹的闭包由一个称为混合判别式的多项式定义。我们定义了一个相关的多项式,称为多元迭代判别式,对经典Sch的推广\“超行列式的afli方法。这种迭代判别式更容易计算,我们证明了它总是可以被混合判别式整除。我们证明了切交点可以通过迭代计算,当且仅当相应对偶变种的奇异轨迹具有足够高的余维。我们还研究了当点配置对应于Segre-Veronese变种时并且对于平面光滑多边形的格点,使它们的迭代判别式等于它们的混合判别式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterated and mixed discriminants
We consider systems of Laurent polynomials with support on a fixed point configuration. In the non-defective case, the closure of the locus of coefficients giving a non-degenerate multiple root of the system is defined by a polynomial called the mixed discriminant. We define a related polynomial called the multivariate iterated discriminant, generalizing the classical Sch\"afli method for hyperdeterminants. This iterated discriminant is easier to compute and we prove that it is always divisible by the mixed discriminant. We show that tangent intersections can be computed via iteration if and only if the singular locus of a corresponding dual variety has sufficiently high codimension. We also study when point configurations corresponding to Segre-Veronese varieties and to the lattice points of planar smooth polygons, have their iterated discriminant equal to their mixed discriminant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信