{"title":"迭代和混合判别法","authors":"A. Dickenstein, S. Rocco, Ralph Morrison","doi":"10.4171/jca/68","DOIUrl":null,"url":null,"abstract":"We consider systems of Laurent polynomials with support on a fixed point configuration. In the non-defective case, the closure of the locus of coefficients giving a non-degenerate multiple root of the system is defined by a polynomial called the mixed discriminant. We define a related polynomial called the multivariate iterated discriminant, generalizing the classical Sch\\\"afli method for hyperdeterminants. This iterated discriminant is easier to compute and we prove that it is always divisible by the mixed discriminant. We show that tangent intersections can be computed via iteration if and only if the singular locus of a corresponding dual variety has sufficiently high codimension. We also study when point configurations corresponding to Segre-Veronese varieties and to the lattice points of planar smooth polygons, have their iterated discriminant equal to their mixed discriminant.","PeriodicalId":48483,"journal":{"name":"Journal of Combinatorial Algebra","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Iterated and mixed discriminants\",\"authors\":\"A. Dickenstein, S. Rocco, Ralph Morrison\",\"doi\":\"10.4171/jca/68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider systems of Laurent polynomials with support on a fixed point configuration. In the non-defective case, the closure of the locus of coefficients giving a non-degenerate multiple root of the system is defined by a polynomial called the mixed discriminant. We define a related polynomial called the multivariate iterated discriminant, generalizing the classical Sch\\\\\\\"afli method for hyperdeterminants. This iterated discriminant is easier to compute and we prove that it is always divisible by the mixed discriminant. We show that tangent intersections can be computed via iteration if and only if the singular locus of a corresponding dual variety has sufficiently high codimension. We also study when point configurations corresponding to Segre-Veronese varieties and to the lattice points of planar smooth polygons, have their iterated discriminant equal to their mixed discriminant.\",\"PeriodicalId\":48483,\"journal\":{\"name\":\"Journal of Combinatorial Algebra\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/jca/68\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/jca/68","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We consider systems of Laurent polynomials with support on a fixed point configuration. In the non-defective case, the closure of the locus of coefficients giving a non-degenerate multiple root of the system is defined by a polynomial called the mixed discriminant. We define a related polynomial called the multivariate iterated discriminant, generalizing the classical Sch\"afli method for hyperdeterminants. This iterated discriminant is easier to compute and we prove that it is always divisible by the mixed discriminant. We show that tangent intersections can be computed via iteration if and only if the singular locus of a corresponding dual variety has sufficiently high codimension. We also study when point configurations corresponding to Segre-Veronese varieties and to the lattice points of planar smooth polygons, have their iterated discriminant equal to their mixed discriminant.