将k-均值聚类方法和简单线性回归作为促进方法应用于新生录取

T. Kurniawan, E. Chumaidiyah, L. Andrawina
{"title":"将k-均值聚类方法和简单线性回归作为促进方法应用于新生录取","authors":"T. Kurniawan, E. Chumaidiyah, L. Andrawina","doi":"10.20895/infotel.v15i1.860","DOIUrl":null,"url":null,"abstract":"At private label universities in Indonesia, new students are still the main thing in terms of achieving university operational income. This study intends to group the data of ITTelkom Surabaya students by utilizing the data mining process using the k-means clustering method, then the results of the clustering are forecasted using simple linear regression to be able to predict the achievement of new students as the effect variable and year as the causative variable. The results of this study consist of 5 variables, namely student province, student study program, income of student parents, student parent work and student ethnicity, each of which consists of 4 clusters, then each cluster is predicted for achievement 3 the coming year 2022,2023,2024. It can be concluded that the highest combination of student/parent student profiles was obtained from East Java province, information systems study program, parents' income of 5-10 million per month, the occupation of other parents and the ethnicity of students from Java. The highest forecasting results are found in the income variable of students' parents in cluster 3 with predictions of 1292 students in 2024. It is hoped that with clustering and forecasting based on this research, ITTelkom Surabaya can make the right decision as a basis for decision making to determine strategy in promoting the campus.","PeriodicalId":30672,"journal":{"name":"Jurnal Infotel","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of the k-means clustering method and simple linear regression to new student admissions as a promotion method\",\"authors\":\"T. Kurniawan, E. Chumaidiyah, L. Andrawina\",\"doi\":\"10.20895/infotel.v15i1.860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At private label universities in Indonesia, new students are still the main thing in terms of achieving university operational income. This study intends to group the data of ITTelkom Surabaya students by utilizing the data mining process using the k-means clustering method, then the results of the clustering are forecasted using simple linear regression to be able to predict the achievement of new students as the effect variable and year as the causative variable. The results of this study consist of 5 variables, namely student province, student study program, income of student parents, student parent work and student ethnicity, each of which consists of 4 clusters, then each cluster is predicted for achievement 3 the coming year 2022,2023,2024. It can be concluded that the highest combination of student/parent student profiles was obtained from East Java province, information systems study program, parents' income of 5-10 million per month, the occupation of other parents and the ethnicity of students from Java. The highest forecasting results are found in the income variable of students' parents in cluster 3 with predictions of 1292 students in 2024. It is hoped that with clustering and forecasting based on this research, ITTelkom Surabaya can make the right decision as a basis for decision making to determine strategy in promoting the campus.\",\"PeriodicalId\":30672,\"journal\":{\"name\":\"Jurnal Infotel\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Infotel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20895/infotel.v15i1.860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Infotel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20895/infotel.v15i1.860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在印度尼西亚的私立大学,新生仍然是获得大学运营收入的主要因素。本研究旨在利用数据挖掘过程,使用k-means聚类方法对泗水ITTelkom学生的数据进行分组,然后使用简单线性回归对聚类结果进行预测,从而能够预测新生的成绩作为影响变量,年份作为原因变量。本研究的结果由5个变量组成,即学生省份、学生学习计划、学生父母收入、学生父母工作和学生种族,每个变量由4个聚类组成,然后每个聚类预测来年的成绩3 202220232024。可以得出的结论是,学生/家长学生档案的最高组合来自东爪哇省、信息系统学习计划、家长每月500-100万的收入、其他家长的职业以及爪哇学生的种族。预测结果最高的是集群3中学生父母的收入变量,预测2024年有1292名学生。希望通过基于本研究的聚类和预测,ITTelkom Surabaya能够做出正确的决策,作为决策的基础,以确定校园推广战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of the k-means clustering method and simple linear regression to new student admissions as a promotion method
At private label universities in Indonesia, new students are still the main thing in terms of achieving university operational income. This study intends to group the data of ITTelkom Surabaya students by utilizing the data mining process using the k-means clustering method, then the results of the clustering are forecasted using simple linear regression to be able to predict the achievement of new students as the effect variable and year as the causative variable. The results of this study consist of 5 variables, namely student province, student study program, income of student parents, student parent work and student ethnicity, each of which consists of 4 clusters, then each cluster is predicted for achievement 3 the coming year 2022,2023,2024. It can be concluded that the highest combination of student/parent student profiles was obtained from East Java province, information systems study program, parents' income of 5-10 million per month, the occupation of other parents and the ethnicity of students from Java. The highest forecasting results are found in the income variable of students' parents in cluster 3 with predictions of 1292 students in 2024. It is hoped that with clustering and forecasting based on this research, ITTelkom Surabaya can make the right decision as a basis for decision making to determine strategy in promoting the campus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
47
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信