{"title":"从局部Cauchy数据稳定地确定Schrödinger方程中的各向异性包含","authors":"Sonia Foschiatti, E. Sincich","doi":"10.3934/ipi.2022063","DOIUrl":null,"url":null,"abstract":"We consider the inverse problem of determining an inclusion contained in a body for a Schr\\\"odinger type equation by means of local Cauchy data. Both the body and the inclusion are made by inhomogeneous and anisotropic materials. Under mild a priori assumptions on the unknown inclusion, we establish a logarithmic stability estimate in terms of the local Cauchy data. In view of possible applications, we also provide a stability estimate in terms of an ad-hoc misfit functional.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stable determination of an anisotropic inclusion in the Schrödinger equation from local Cauchy data\",\"authors\":\"Sonia Foschiatti, E. Sincich\",\"doi\":\"10.3934/ipi.2022063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the inverse problem of determining an inclusion contained in a body for a Schr\\\\\\\"odinger type equation by means of local Cauchy data. Both the body and the inclusion are made by inhomogeneous and anisotropic materials. Under mild a priori assumptions on the unknown inclusion, we establish a logarithmic stability estimate in terms of the local Cauchy data. In view of possible applications, we also provide a stability estimate in terms of an ad-hoc misfit functional.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/ipi.2022063\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2022063","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Stable determination of an anisotropic inclusion in the Schrödinger equation from local Cauchy data
We consider the inverse problem of determining an inclusion contained in a body for a Schr\"odinger type equation by means of local Cauchy data. Both the body and the inclusion are made by inhomogeneous and anisotropic materials. Under mild a priori assumptions on the unknown inclusion, we establish a logarithmic stability estimate in terms of the local Cauchy data. In view of possible applications, we also provide a stability estimate in terms of an ad-hoc misfit functional.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.