强测度零理想的覆盖数几乎可以高于其他一切

IF 0.3 4区 数学 Q1 Arts and Humanities
Miguel A. Cardona, Diego A. Mejía, Ismael E. Rivera-Madrid
{"title":"强测度零理想的覆盖数几乎可以高于其他一切","authors":"Miguel A. Cardona,&nbsp;Diego A. Mejía,&nbsp;Ismael E. Rivera-Madrid","doi":"10.1007/s00153-021-00808-0","DOIUrl":null,"url":null,"abstract":"<div><p>We show that certain type of tree forcings, including Sacks forcing, increases the covering of the strong measure zero ideal <span>\\({{\\mathcal {S}}}{{\\mathcal {N}}}\\)</span>. As a consequence, in Sacks model, such covering number is equal to the size of the continuum, which indicates that this covering number is consistently larger than any other classical cardinal invariant of the continuum. Even more, Sacks forcing can be used to force that <span>\\(\\mathrm {non}({{\\mathcal {S}}}{{\\mathcal {N}}})&lt;\\mathrm {cov}({{\\mathcal {S}}}{{\\mathcal {N}}})&lt;\\mathrm {cof}({{\\mathcal {S}}}{{\\mathcal {N}}})\\)</span>, which is the first consistency result where more than two cardinal invariants associated with <span>\\({{\\mathcal {S}}}{{\\mathcal {N}}}\\)</span> are pairwise different. Another consequence is that <span>\\({{\\mathcal {S}}}{{\\mathcal {N}}}\\subseteq s^0\\)</span> in ZFC where <span>\\(s^0\\)</span> denotes Marczewski’s ideal.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00153-021-00808-0.pdf","citationCount":"6","resultStr":"{\"title\":\"The covering number of the strong measure zero ideal can be above almost everything else\",\"authors\":\"Miguel A. Cardona,&nbsp;Diego A. Mejía,&nbsp;Ismael E. Rivera-Madrid\",\"doi\":\"10.1007/s00153-021-00808-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that certain type of tree forcings, including Sacks forcing, increases the covering of the strong measure zero ideal <span>\\\\({{\\\\mathcal {S}}}{{\\\\mathcal {N}}}\\\\)</span>. As a consequence, in Sacks model, such covering number is equal to the size of the continuum, which indicates that this covering number is consistently larger than any other classical cardinal invariant of the continuum. Even more, Sacks forcing can be used to force that <span>\\\\(\\\\mathrm {non}({{\\\\mathcal {S}}}{{\\\\mathcal {N}}})&lt;\\\\mathrm {cov}({{\\\\mathcal {S}}}{{\\\\mathcal {N}}})&lt;\\\\mathrm {cof}({{\\\\mathcal {S}}}{{\\\\mathcal {N}}})\\\\)</span>, which is the first consistency result where more than two cardinal invariants associated with <span>\\\\({{\\\\mathcal {S}}}{{\\\\mathcal {N}}}\\\\)</span> are pairwise different. Another consequence is that <span>\\\\({{\\\\mathcal {S}}}{{\\\\mathcal {N}}}\\\\subseteq s^0\\\\)</span> in ZFC where <span>\\\\(s^0\\\\)</span> denotes Marczewski’s ideal.</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2021-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00153-021-00808-0.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-021-00808-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-021-00808-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 6

摘要

我们证明了某些类型的树木强迫,包括Sacks强迫,增加了强测量零理想\({{\mathcal {S}}}{{\mathcal {N}}}\)的覆盖度。因此,在Sacks模型中,该覆盖数等于连续统的大小,这表明该覆盖数始终大于连续统的任何其他经典基数不变量。甚至,Sacks强制可以用来强制\(\mathrm {non}({{\mathcal {S}}}{{\mathcal {N}}})<\mathrm {cov}({{\mathcal {S}}}{{\mathcal {N}}})<\mathrm {cof}({{\mathcal {S}}}{{\mathcal {N}}})\),这是第一个一致性结果,其中与\({{\mathcal {S}}}{{\mathcal {N}}}\)相关的两个以上的基本不变量是两两不同的。另一个结果是ZFC中的\({{\mathcal {S}}}{{\mathcal {N}}}\subseteq s^0\),其中\(s^0\)表示马尔切夫斯基的理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The covering number of the strong measure zero ideal can be above almost everything else

The covering number of the strong measure zero ideal can be above almost everything else

We show that certain type of tree forcings, including Sacks forcing, increases the covering of the strong measure zero ideal \({{\mathcal {S}}}{{\mathcal {N}}}\). As a consequence, in Sacks model, such covering number is equal to the size of the continuum, which indicates that this covering number is consistently larger than any other classical cardinal invariant of the continuum. Even more, Sacks forcing can be used to force that \(\mathrm {non}({{\mathcal {S}}}{{\mathcal {N}}})<\mathrm {cov}({{\mathcal {S}}}{{\mathcal {N}}})<\mathrm {cof}({{\mathcal {S}}}{{\mathcal {N}}})\), which is the first consistency result where more than two cardinal invariants associated with \({{\mathcal {S}}}{{\mathcal {N}}}\) are pairwise different. Another consequence is that \({{\mathcal {S}}}{{\mathcal {N}}}\subseteq s^0\) in ZFC where \(s^0\) denotes Marczewski’s ideal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archive for Mathematical Logic
Archive for Mathematical Logic MATHEMATICS-LOGIC
CiteScore
0.80
自引率
0.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信