粉末床熔融法铣削添加镍合金625的切削力研究

Q3 Engineering
Jixiong Fei, Guoliang Liu, Kaushalendra V. Patel, T. Özel
{"title":"粉末床熔融法铣削添加镍合金625的切削力研究","authors":"Jixiong Fei, Guoliang Liu, Kaushalendra V. Patel, T. Özel","doi":"10.1504/ijmms.2019.10025072","DOIUrl":null,"url":null,"abstract":"The face milling of additively fabricated nickel alloy 625 produced via laser powder bed fusion is experimentally investigated. Typically, cutting forces are the most important factor affects the process outcome in terms of surface finish and chatter vibrations in milling of difficult-to-cut materials. The additively fabricated materials possess different mechanical properties hence their cutting force performance is usually unknown. For additively fabricated nickel alloy 625, the build direction and scan strategy rotation are known to influence the resultant workpiece structure with columnar grains. The peak milling force is found dependent upon the feed direction as well as the layerwise scan rotation employed in fabricating the workpiece. Feeding the cutter against the build direction resulted in lower peak forces with larger deviations, however feeding along the build direction resulted in higher peak forces with lower deviations. The build direction was also observable on fan shaped chip surfaces.","PeriodicalId":39429,"journal":{"name":"International Journal of Mechatronics and Manufacturing Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Cutting force investigation in face milling of additively fabricated nickel alloy 625 via powder bed fusion\",\"authors\":\"Jixiong Fei, Guoliang Liu, Kaushalendra V. Patel, T. Özel\",\"doi\":\"10.1504/ijmms.2019.10025072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The face milling of additively fabricated nickel alloy 625 produced via laser powder bed fusion is experimentally investigated. Typically, cutting forces are the most important factor affects the process outcome in terms of surface finish and chatter vibrations in milling of difficult-to-cut materials. The additively fabricated materials possess different mechanical properties hence their cutting force performance is usually unknown. For additively fabricated nickel alloy 625, the build direction and scan strategy rotation are known to influence the resultant workpiece structure with columnar grains. The peak milling force is found dependent upon the feed direction as well as the layerwise scan rotation employed in fabricating the workpiece. Feeding the cutter against the build direction resulted in lower peak forces with larger deviations, however feeding along the build direction resulted in higher peak forces with lower deviations. The build direction was also observable on fan shaped chip surfaces.\",\"PeriodicalId\":39429,\"journal\":{\"name\":\"International Journal of Mechatronics and Manufacturing Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechatronics and Manufacturing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijmms.2019.10025072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechatronics and Manufacturing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmms.2019.10025072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 7

摘要

对激光粉末床熔融法制备的镍合金625进行了表面铣削实验研究。通常,切削力是影响加工结果的最重要因素,涉及难以切削材料铣削过程中的表面光洁度和颤振。添加制造的材料具有不同的机械性能,因此它们的切削力性能通常是未知的。对于添加制造的镍合金625,已知构建方向和扫描策略旋转会影响具有柱状晶粒的所得工件结构。发现峰值铣削力取决于进给方向以及制造工件时采用的分层扫描旋转。逆着构建方向进给刀具会产生具有较大偏差的较低峰值力,但沿构建方向进给会产生具有较小偏差的较高峰值力。在扇形芯片表面上也可以观察到构建方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cutting force investigation in face milling of additively fabricated nickel alloy 625 via powder bed fusion
The face milling of additively fabricated nickel alloy 625 produced via laser powder bed fusion is experimentally investigated. Typically, cutting forces are the most important factor affects the process outcome in terms of surface finish and chatter vibrations in milling of difficult-to-cut materials. The additively fabricated materials possess different mechanical properties hence their cutting force performance is usually unknown. For additively fabricated nickel alloy 625, the build direction and scan strategy rotation are known to influence the resultant workpiece structure with columnar grains. The peak milling force is found dependent upon the feed direction as well as the layerwise scan rotation employed in fabricating the workpiece. Feeding the cutter against the build direction resulted in lower peak forces with larger deviations, however feeding along the build direction resulted in higher peak forces with lower deviations. The build direction was also observable on fan shaped chip surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mechatronics and Manufacturing Systems
International Journal of Mechatronics and Manufacturing Systems Engineering-Industrial and Manufacturing Engineering
CiteScore
1.90
自引率
0.00%
发文量
10
期刊介绍: IJMMS publishes refereed quality papers in the broad field of mechatronics and manufacturing systems with a special emphasis on research and development in the modern engineering of advanced manufacturing processes and systems. IJMMS fosters information exchange and discussion on all aspects of mechatronics (computers, electrical and mechanical engineering) with applications in manufacturing processes and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信