Jixiong Fei, Guoliang Liu, Kaushalendra V. Patel, T. Özel
{"title":"粉末床熔融法铣削添加镍合金625的切削力研究","authors":"Jixiong Fei, Guoliang Liu, Kaushalendra V. Patel, T. Özel","doi":"10.1504/ijmms.2019.10025072","DOIUrl":null,"url":null,"abstract":"The face milling of additively fabricated nickel alloy 625 produced via laser powder bed fusion is experimentally investigated. Typically, cutting forces are the most important factor affects the process outcome in terms of surface finish and chatter vibrations in milling of difficult-to-cut materials. The additively fabricated materials possess different mechanical properties hence their cutting force performance is usually unknown. For additively fabricated nickel alloy 625, the build direction and scan strategy rotation are known to influence the resultant workpiece structure with columnar grains. The peak milling force is found dependent upon the feed direction as well as the layerwise scan rotation employed in fabricating the workpiece. Feeding the cutter against the build direction resulted in lower peak forces with larger deviations, however feeding along the build direction resulted in higher peak forces with lower deviations. The build direction was also observable on fan shaped chip surfaces.","PeriodicalId":39429,"journal":{"name":"International Journal of Mechatronics and Manufacturing Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Cutting force investigation in face milling of additively fabricated nickel alloy 625 via powder bed fusion\",\"authors\":\"Jixiong Fei, Guoliang Liu, Kaushalendra V. Patel, T. Özel\",\"doi\":\"10.1504/ijmms.2019.10025072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The face milling of additively fabricated nickel alloy 625 produced via laser powder bed fusion is experimentally investigated. Typically, cutting forces are the most important factor affects the process outcome in terms of surface finish and chatter vibrations in milling of difficult-to-cut materials. The additively fabricated materials possess different mechanical properties hence their cutting force performance is usually unknown. For additively fabricated nickel alloy 625, the build direction and scan strategy rotation are known to influence the resultant workpiece structure with columnar grains. The peak milling force is found dependent upon the feed direction as well as the layerwise scan rotation employed in fabricating the workpiece. Feeding the cutter against the build direction resulted in lower peak forces with larger deviations, however feeding along the build direction resulted in higher peak forces with lower deviations. The build direction was also observable on fan shaped chip surfaces.\",\"PeriodicalId\":39429,\"journal\":{\"name\":\"International Journal of Mechatronics and Manufacturing Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechatronics and Manufacturing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijmms.2019.10025072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechatronics and Manufacturing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijmms.2019.10025072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Cutting force investigation in face milling of additively fabricated nickel alloy 625 via powder bed fusion
The face milling of additively fabricated nickel alloy 625 produced via laser powder bed fusion is experimentally investigated. Typically, cutting forces are the most important factor affects the process outcome in terms of surface finish and chatter vibrations in milling of difficult-to-cut materials. The additively fabricated materials possess different mechanical properties hence their cutting force performance is usually unknown. For additively fabricated nickel alloy 625, the build direction and scan strategy rotation are known to influence the resultant workpiece structure with columnar grains. The peak milling force is found dependent upon the feed direction as well as the layerwise scan rotation employed in fabricating the workpiece. Feeding the cutter against the build direction resulted in lower peak forces with larger deviations, however feeding along the build direction resulted in higher peak forces with lower deviations. The build direction was also observable on fan shaped chip surfaces.
期刊介绍:
IJMMS publishes refereed quality papers in the broad field of mechatronics and manufacturing systems with a special emphasis on research and development in the modern engineering of advanced manufacturing processes and systems. IJMMS fosters information exchange and discussion on all aspects of mechatronics (computers, electrical and mechanical engineering) with applications in manufacturing processes and systems.