Soraya Fareh, K. Akrout, A. Ghanmi, Dušan D. Repovš
{"title":"包含临界非线性的分数阶Schrödinger-Kirchhoff系统的多重性结果","authors":"Soraya Fareh, K. Akrout, A. Ghanmi, Dušan D. Repovš","doi":"10.1515/anona-2022-0318","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we study certain critical Schrödinger-Kirchhoff-type systems involving the fractional p p -Laplace operator on a bounded domain. More precisely, using the properties of the associated functional energy on the Nehari manifold sets and exploiting the analysis of the fibering map, we establish the multiplicity of solutions for such systems.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multiplicity results for fractional Schrödinger-Kirchhoff systems involving critical nonlinearities\",\"authors\":\"Soraya Fareh, K. Akrout, A. Ghanmi, Dušan D. Repovš\",\"doi\":\"10.1515/anona-2022-0318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we study certain critical Schrödinger-Kirchhoff-type systems involving the fractional p p -Laplace operator on a bounded domain. More precisely, using the properties of the associated functional energy on the Nehari manifold sets and exploiting the analysis of the fibering map, we establish the multiplicity of solutions for such systems.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0318\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0318","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Multiplicity results for fractional Schrödinger-Kirchhoff systems involving critical nonlinearities
Abstract In this article, we study certain critical Schrödinger-Kirchhoff-type systems involving the fractional p p -Laplace operator on a bounded domain. More precisely, using the properties of the associated functional energy on the Nehari manifold sets and exploiting the analysis of the fibering map, we establish the multiplicity of solutions for such systems.