非均质材料的优化提高整体断裂抗力

IF 3.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sukhminder Singh , Lukas Pflug , Julia Mergheim , Michael Stingl
{"title":"非均质材料的优化提高整体断裂抗力","authors":"Sukhminder Singh ,&nbsp;Lukas Pflug ,&nbsp;Julia Mergheim ,&nbsp;Michael Stingl","doi":"10.1016/j.finmec.2023.100200","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a novel approach to optimize the design of heterogeneous materials, with the goal of enhancing their effective fracture toughness under mode-I loading. The method employs a Gaussian processes-based Bayesian optimization framework to determine the optimal shapes and locations of stiff elliptical inclusions within a periodic microstructure in two dimensions. To model crack propagation, the phase-field fracture method with an efficient interior-point monolithic solver and adaptive mesh refinement, is used. To account for the high sensitivity of fracture properties to initial crack location with respect to heterogeneities, we consider multiple cases of initial crack and optimize the material for the worst-case scenario. We also impose a minimum clearance constraint between the inclusions to ensure design feasibility. Numerical experiments demonstrate that the method significantly improves the fracture toughness of the material compared to the homogeneous case.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On optimization of heterogeneous materials for enhanced resistance to bulk fracture\",\"authors\":\"Sukhminder Singh ,&nbsp;Lukas Pflug ,&nbsp;Julia Mergheim ,&nbsp;Michael Stingl\",\"doi\":\"10.1016/j.finmec.2023.100200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a novel approach to optimize the design of heterogeneous materials, with the goal of enhancing their effective fracture toughness under mode-I loading. The method employs a Gaussian processes-based Bayesian optimization framework to determine the optimal shapes and locations of stiff elliptical inclusions within a periodic microstructure in two dimensions. To model crack propagation, the phase-field fracture method with an efficient interior-point monolithic solver and adaptive mesh refinement, is used. To account for the high sensitivity of fracture properties to initial crack location with respect to heterogeneities, we consider multiple cases of initial crack and optimize the material for the worst-case scenario. We also impose a minimum clearance constraint between the inclusions to ensure design feasibility. Numerical experiments demonstrate that the method significantly improves the fracture toughness of the material compared to the homogeneous case.</p></div>\",\"PeriodicalId\":93433,\"journal\":{\"name\":\"Forces in mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forces in mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666359723000355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359723000355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种新的方法来优化非均质材料的设计,以提高其在i型载荷下的有效断裂韧性。该方法采用基于高斯过程的贝叶斯优化框架,在二维空间上确定周期性微观结构中刚性椭圆夹杂物的最佳形状和位置。为了模拟裂纹扩展,采用了具有高效内点整体求解器和自适应网格细化的相场断裂方法。考虑到断裂特性对初始裂纹位置的高度敏感性,我们考虑了多种初始裂纹情况,并针对最坏情况对材料进行了优化。我们还在内含物之间施加最小间隙约束,以确保设计的可行性。数值实验表明,与均匀情况相比,该方法显著提高了材料的断裂韧性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On optimization of heterogeneous materials for enhanced resistance to bulk fracture

We propose a novel approach to optimize the design of heterogeneous materials, with the goal of enhancing their effective fracture toughness under mode-I loading. The method employs a Gaussian processes-based Bayesian optimization framework to determine the optimal shapes and locations of stiff elliptical inclusions within a periodic microstructure in two dimensions. To model crack propagation, the phase-field fracture method with an efficient interior-point monolithic solver and adaptive mesh refinement, is used. To account for the high sensitivity of fracture properties to initial crack location with respect to heterogeneities, we consider multiple cases of initial crack and optimize the material for the worst-case scenario. We also impose a minimum clearance constraint between the inclusions to ensure design feasibility. Numerical experiments demonstrate that the method significantly improves the fracture toughness of the material compared to the homogeneous case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forces in mechanics
Forces in mechanics Mechanics of Materials
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
52 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信