{"title":"加权全纯Dirichlet级数与多项式符号的复合算子","authors":"E. Fricain, Camille Mau","doi":"10.7146/math.scand.a-129686","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a general class of weighted spaces of holomorphic Dirichlet series (with real frequencies) analytic in some half-plane and study composition operators on these spaces. In the particular case when the symbol inducing the composition operator is an affine function, we give criteria for boundedness and compactness. We also study the cyclicity property and as a byproduct give a characterization so that the direct sum of the identity plus a weighted forward shift operator on $\\ell^2$ is cyclic.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted holomorphic Dirichlet series and composition operators with polynomial symbols\",\"authors\":\"E. Fricain, Camille Mau\",\"doi\":\"10.7146/math.scand.a-129686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a general class of weighted spaces of holomorphic Dirichlet series (with real frequencies) analytic in some half-plane and study composition operators on these spaces. In the particular case when the symbol inducing the composition operator is an affine function, we give criteria for boundedness and compactness. We also study the cyclicity property and as a byproduct give a characterization so that the direct sum of the identity plus a weighted forward shift operator on $\\\\ell^2$ is cyclic.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7146/math.scand.a-129686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7146/math.scand.a-129686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weighted holomorphic Dirichlet series and composition operators with polynomial symbols
In this paper, we introduce a general class of weighted spaces of holomorphic Dirichlet series (with real frequencies) analytic in some half-plane and study composition operators on these spaces. In the particular case when the symbol inducing the composition operator is an affine function, we give criteria for boundedness and compactness. We also study the cyclicity property and as a byproduct give a characterization so that the direct sum of the identity plus a weighted forward shift operator on $\ell^2$ is cyclic.