锯齿与矩形细胞神经网络耦合在乙肝患者b扫描图像中的动态分析

Mian Wang, L. Min, G. Litscher, Min Li
{"title":"锯齿与矩形细胞神经网络耦合在乙肝患者b扫描图像中的动态分析","authors":"Mian Wang, L. Min, G. Litscher, Min Li","doi":"10.1159/000455852","DOIUrl":null,"url":null,"abstract":"Liver damage caused by hepatitis B virus (HBV) infections is diffuse. Live medical images and FibroScan images show that it is inhomogeneous. Modeling and interpreting such phenomena are both important for theoretical research and practical application. The cellular neural networks (CNNs) introduced by Chua and Yang can model widely observed patterns in both nonbiological and biological media. The sawtooth and rectangle (SR) CNN introduced by Chua and colleagues is able to generate SR-shaped patterns for any random-input grayscale patterns, which are also similar to some chronic HBV-infected patients' liver B-scan images. This paper will mathematically study the dynamic behaviors of the SR CNN, numerically simulate the output images of the SR CNN, and biologically interpret the relationships between the output images of the SR CNN and the patterns in HBV-infected patients' liver B-scan images. Our research results show that the SR CNN may be used as a candidate for modeling liver infections.","PeriodicalId":91502,"journal":{"name":"Integrative medicine international","volume":"4 1","pages":"19 - 30"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000455852","citationCount":"0","resultStr":"{\"title\":\"Dynamic Analysis of Coupled Sawtooth and Rectangle Cellular Neural Networks with Application in HBV Patients' B-Scan Images\",\"authors\":\"Mian Wang, L. Min, G. Litscher, Min Li\",\"doi\":\"10.1159/000455852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liver damage caused by hepatitis B virus (HBV) infections is diffuse. Live medical images and FibroScan images show that it is inhomogeneous. Modeling and interpreting such phenomena are both important for theoretical research and practical application. The cellular neural networks (CNNs) introduced by Chua and Yang can model widely observed patterns in both nonbiological and biological media. The sawtooth and rectangle (SR) CNN introduced by Chua and colleagues is able to generate SR-shaped patterns for any random-input grayscale patterns, which are also similar to some chronic HBV-infected patients' liver B-scan images. This paper will mathematically study the dynamic behaviors of the SR CNN, numerically simulate the output images of the SR CNN, and biologically interpret the relationships between the output images of the SR CNN and the patterns in HBV-infected patients' liver B-scan images. Our research results show that the SR CNN may be used as a candidate for modeling liver infections.\",\"PeriodicalId\":91502,\"journal\":{\"name\":\"Integrative medicine international\",\"volume\":\"4 1\",\"pages\":\"19 - 30\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000455852\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative medicine international\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000455852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative medicine international","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000455852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

乙型肝炎病毒(HBV)感染引起的肝损害是弥漫性的。实时医学图像和纤维扫描图像显示其不均匀。这种现象的建模和解释对于理论研究和实际应用都具有重要意义。Chua和Yang介绍的细胞神经网络(cnn)可以模拟在非生物和生物介质中广泛观察到的模式。Chua及其同事介绍的锯齿矩形(SR) CNN能够为任何随机输入的灰度模式生成SR形状的模式,这也类似于一些慢性hbv感染患者的肝脏b扫描图像。本文将从数学上研究SR CNN的动态行为,数值模拟SR CNN的输出图像,并从生物学上解释SR CNN输出图像与hbv感染患者肝脏b扫描图像模式之间的关系。我们的研究结果表明,SR CNN可以作为模拟肝脏感染的候选方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Analysis of Coupled Sawtooth and Rectangle Cellular Neural Networks with Application in HBV Patients' B-Scan Images
Liver damage caused by hepatitis B virus (HBV) infections is diffuse. Live medical images and FibroScan images show that it is inhomogeneous. Modeling and interpreting such phenomena are both important for theoretical research and practical application. The cellular neural networks (CNNs) introduced by Chua and Yang can model widely observed patterns in both nonbiological and biological media. The sawtooth and rectangle (SR) CNN introduced by Chua and colleagues is able to generate SR-shaped patterns for any random-input grayscale patterns, which are also similar to some chronic HBV-infected patients' liver B-scan images. This paper will mathematically study the dynamic behaviors of the SR CNN, numerically simulate the output images of the SR CNN, and biologically interpret the relationships between the output images of the SR CNN and the patterns in HBV-infected patients' liver B-scan images. Our research results show that the SR CNN may be used as a candidate for modeling liver infections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信