具有不规则圆的欧氏平面的最薄覆盖

Pub Date : 2017-03-01 DOI:10.1515/AGMS-2017-0002
D. Dorninger
{"title":"具有不规则圆的欧氏平面的最薄覆盖","authors":"D. Dorninger","doi":"10.1515/AGMS-2017-0002","DOIUrl":null,"url":null,"abstract":"Abstract In 1958 L. Fejes Tóth and J. Molnar proposed a conjecture about a lower bound for the thinnest covering of the plane by circles with arbitrary radii from a given interval of the reals. If only two kinds of radii can occur this conjecture was in essence proven by A. Florian in 1962, leaving the general case unanswered till now. The goal of this paper is to analytically describe the general case in such a way that the conjecture can easily be numerically verified and upper and lower limits for the asserted bound can be gained.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/AGMS-2017-0002","citationCount":"6","resultStr":"{\"title\":\"Thinnest Covering of the Euclidean Plane with Incongruent Circles\",\"authors\":\"D. Dorninger\",\"doi\":\"10.1515/AGMS-2017-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In 1958 L. Fejes Tóth and J. Molnar proposed a conjecture about a lower bound for the thinnest covering of the plane by circles with arbitrary radii from a given interval of the reals. If only two kinds of radii can occur this conjecture was in essence proven by A. Florian in 1962, leaving the general case unanswered till now. The goal of this paper is to analytically describe the general case in such a way that the conjecture can easily be numerically verified and upper and lower limits for the asserted bound can be gained.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/AGMS-2017-0002\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/AGMS-2017-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/AGMS-2017-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

1958年,L. Fejes Tóth和J. Molnar提出了一个关于给定实数区间内任意半径圆覆盖平面的最薄下界的猜想。如果只有两种半径可以出现,这个猜想实质上是由A. Florian在1962年证明的,这使得一般情况到现在还没有答案。本文的目的是解析地描述一般情况,使猜想可以很容易地在数值上得到验证,并且可以得到断言界的上下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Thinnest Covering of the Euclidean Plane with Incongruent Circles
Abstract In 1958 L. Fejes Tóth and J. Molnar proposed a conjecture about a lower bound for the thinnest covering of the plane by circles with arbitrary radii from a given interval of the reals. If only two kinds of radii can occur this conjecture was in essence proven by A. Florian in 1962, leaving the general case unanswered till now. The goal of this paper is to analytically describe the general case in such a way that the conjecture can easily be numerically verified and upper and lower limits for the asserted bound can be gained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信