使用过程知情机器学习的全球流建模

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Michele Magni, E. Sutanudjaja, Youchen Shen, D. Karssenberg
{"title":"使用过程知情机器学习的全球流建模","authors":"Michele Magni, E. Sutanudjaja, Youchen Shen, D. Karssenberg","doi":"10.2166/hydro.2023.217","DOIUrl":null,"url":null,"abstract":"\n We present a novel hybrid framework that incorporates information from the process-based global hydrological model (GHM) PCR-GLOBWB, to reduce prediction errors in streamflow simulations. In addition to catchment attributes and meteorological data, our methodology employs simulated streamflow and state variables from PCR-GLOBWB as predictors of observed river discharge. These outputs are used in a random forest, trained on a global database of streamflow measurements, to improve estimates of simulated river discharge across the globe. PCR-GLOBWB was run for the years 1979–2019 at 30 arcmin and its inputs and outputs were upscaled from daily to monthly time steps. A single random forest model was trained with these state variables, meteorological data and catchment attributes, as predictors of observed streamflow from 2,286 stations worldwide. Model performance was evaluated using Kling–Gupta efficiency (KGE). Results based on cross-validation show that the model is capable of discerning between a variety of hydroclimatic conditions and river flow dynamics, improving KGE of PCR-GLOBWB simulations at more than 80% of testing locations and increasing median KGE from −0.02 in uncalibrated runs to 0.52 after post-processing. Performance boosts are usually independent of the availability of streamflow data, making our method a potential candidate in addressing prediction in poorly gauged and ungauged basins.","PeriodicalId":54801,"journal":{"name":"Journal of Hydroinformatics","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global streamflow modelling using process-informed machine learning\",\"authors\":\"Michele Magni, E. Sutanudjaja, Youchen Shen, D. Karssenberg\",\"doi\":\"10.2166/hydro.2023.217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We present a novel hybrid framework that incorporates information from the process-based global hydrological model (GHM) PCR-GLOBWB, to reduce prediction errors in streamflow simulations. In addition to catchment attributes and meteorological data, our methodology employs simulated streamflow and state variables from PCR-GLOBWB as predictors of observed river discharge. These outputs are used in a random forest, trained on a global database of streamflow measurements, to improve estimates of simulated river discharge across the globe. PCR-GLOBWB was run for the years 1979–2019 at 30 arcmin and its inputs and outputs were upscaled from daily to monthly time steps. A single random forest model was trained with these state variables, meteorological data and catchment attributes, as predictors of observed streamflow from 2,286 stations worldwide. Model performance was evaluated using Kling–Gupta efficiency (KGE). Results based on cross-validation show that the model is capable of discerning between a variety of hydroclimatic conditions and river flow dynamics, improving KGE of PCR-GLOBWB simulations at more than 80% of testing locations and increasing median KGE from −0.02 in uncalibrated runs to 0.52 after post-processing. Performance boosts are usually independent of the availability of streamflow data, making our method a potential candidate in addressing prediction in poorly gauged and ungauged basins.\",\"PeriodicalId\":54801,\"journal\":{\"name\":\"Journal of Hydroinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydroinformatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2166/hydro.2023.217\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydroinformatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2166/hydro.2023.217","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个新的混合框架,该框架结合了基于过程的全球水文模型(GHM) PCR-GLOBWB的信息,以减少流模拟中的预测误差。除了流域属性和气象数据外,我们的方法还使用PCR-GLOBWB的模拟流量和状态变量作为观测河流流量的预测因子。这些输出在随机森林中使用,在全球流量测量数据库上进行训练,以改进对全球模拟河流流量的估计。PCR-GLOBWB在1979-2019年间以每小时30分的速度运行,其投入和产出从每天的时间步长升级为每月的时间步长。使用这些状态变量、气象数据和流域属性训练了一个单一的随机森林模型,作为全球2,286个站点观测到的流量的预测因子。采用克林-古普塔效率(KGE)评价模型性能。基于交叉验证的结果表明,该模型能够区分各种水文气候条件和河流流量动力学,在超过80%的测试地点提高了PCR-GLOBWB模拟的KGE,并将未校准运行的KGE中位数从- 0.02提高到后期处理后的0.52。性能提升通常与流量数据的可用性无关,这使得我们的方法成为解决测量差和未测量盆地预测问题的潜在候选方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global streamflow modelling using process-informed machine learning
We present a novel hybrid framework that incorporates information from the process-based global hydrological model (GHM) PCR-GLOBWB, to reduce prediction errors in streamflow simulations. In addition to catchment attributes and meteorological data, our methodology employs simulated streamflow and state variables from PCR-GLOBWB as predictors of observed river discharge. These outputs are used in a random forest, trained on a global database of streamflow measurements, to improve estimates of simulated river discharge across the globe. PCR-GLOBWB was run for the years 1979–2019 at 30 arcmin and its inputs and outputs were upscaled from daily to monthly time steps. A single random forest model was trained with these state variables, meteorological data and catchment attributes, as predictors of observed streamflow from 2,286 stations worldwide. Model performance was evaluated using Kling–Gupta efficiency (KGE). Results based on cross-validation show that the model is capable of discerning between a variety of hydroclimatic conditions and river flow dynamics, improving KGE of PCR-GLOBWB simulations at more than 80% of testing locations and increasing median KGE from −0.02 in uncalibrated runs to 0.52 after post-processing. Performance boosts are usually independent of the availability of streamflow data, making our method a potential candidate in addressing prediction in poorly gauged and ungauged basins.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydroinformatics
Journal of Hydroinformatics 工程技术-工程:土木
CiteScore
4.80
自引率
3.70%
发文量
59
审稿时长
3 months
期刊介绍: Journal of Hydroinformatics is a peer-reviewed journal devoted to the application of information technology in the widest sense to problems of the aquatic environment. It promotes Hydroinformatics as a cross-disciplinary field of study, combining technological, human-sociological and more general environmental interests, including an ethical perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信