机器学习在材料腐蚀研究中的应用

IF 2.7 4区 材料科学 Q3 ELECTROCHEMISTRY
Shuaijie Ma, Yanxia Du, Shasha Wang, Yanjing Su
{"title":"机器学习在材料腐蚀研究中的应用","authors":"Shuaijie Ma, Yanxia Du, Shasha Wang, Yanjing Su","doi":"10.1515/corrrev-2022-0089","DOIUrl":null,"url":null,"abstract":"Abstract The application of machine learning (ML) to corrosion research has become an important trend in corrosion science in recent years. In this paper, the feature extraction method for corrosion data and the ML algorithms commonly used (including artificial neural networks, support vector machines, ensemble learning and other widely used algorithms) in corrosion field is introduced. Then, the characteristics of different algorithms and their application scenarios in the corrosion prediction are summarized. Finally, the development trend of ML in material corrosion field is prospected.","PeriodicalId":10721,"journal":{"name":"Corrosion Reviews","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of machine learning in material corrosion research\",\"authors\":\"Shuaijie Ma, Yanxia Du, Shasha Wang, Yanjing Su\",\"doi\":\"10.1515/corrrev-2022-0089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The application of machine learning (ML) to corrosion research has become an important trend in corrosion science in recent years. In this paper, the feature extraction method for corrosion data and the ML algorithms commonly used (including artificial neural networks, support vector machines, ensemble learning and other widely used algorithms) in corrosion field is introduced. Then, the characteristics of different algorithms and their application scenarios in the corrosion prediction are summarized. Finally, the development trend of ML in material corrosion field is prospected.\",\"PeriodicalId\":10721,\"journal\":{\"name\":\"Corrosion Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/corrrev-2022-0089\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/corrrev-2022-0089","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1

摘要

摘要近年来,机器学习在腐蚀研究中的应用已成为腐蚀科学的一个重要趋势。本文介绍了腐蚀数据的特征提取方法以及腐蚀领域常用的ML算法(包括人工神经网络、支持向量机、集成学习等广泛使用的算法)。然后,总结了不同算法的特点及其在腐蚀预测中的应用场景。最后,展望了机器学习在材料腐蚀领域的发展趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of machine learning in material corrosion research
Abstract The application of machine learning (ML) to corrosion research has become an important trend in corrosion science in recent years. In this paper, the feature extraction method for corrosion data and the ML algorithms commonly used (including artificial neural networks, support vector machines, ensemble learning and other widely used algorithms) in corrosion field is introduced. Then, the characteristics of different algorithms and their application scenarios in the corrosion prediction are summarized. Finally, the development trend of ML in material corrosion field is prospected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Corrosion Reviews
Corrosion Reviews 工程技术-材料科学:膜
CiteScore
5.20
自引率
3.10%
发文量
44
审稿时长
4.5 months
期刊介绍: Corrosion Reviews is an international bimonthly journal devoted to critical reviews and, to a lesser extent, outstanding original articles that are key to advancing the understanding and application of corrosion science and engineering in the service of society. Papers may be of a theoretical, experimental or practical nature, provided that they make a significant contribution to knowledge in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信