用于安全系统的机器学习——文献综述

Nuruddin Wiranda, Fal Sadikin, Wanvy Arifha Saputra
{"title":"用于安全系统的机器学习——文献综述","authors":"Nuruddin Wiranda, Fal Sadikin, Wanvy Arifha Saputra","doi":"10.22146/ijeis.69022","DOIUrl":null,"url":null,"abstract":"Security systems are one of the crucial topics in the era of digital transformation. In the use of digital technology, security systems are used to ensure the confidentiality, integrity, and availability of data. Machine learning techniques can be applied to support the system's adaptability to the environment, so that prevention, detection and recovery can be carried out. Given the importance of these things, it is necessary to review the literature to find out how machine learning is applied to security systems. This paper presents a summary of 31 research papers to determine what machine learning techniques or methods are the most promising for prevention, detection and recovery. The research stages in this paper consist of 6 stages, namely: formulating research questions, searching for articles, documenting search strategies, selecting studies, assessing article quality, and extracting data obtained from articles. Based on the results of the study, it was found that the K-means method was the most promising for prevention, while for detection, SVM could be used, and for security recovery, machine learning could be implemented using NLP-based features.","PeriodicalId":31590,"journal":{"name":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pembelajaran Mesin untuk Sistem Keamanan - Literatur Review\",\"authors\":\"Nuruddin Wiranda, Fal Sadikin, Wanvy Arifha Saputra\",\"doi\":\"10.22146/ijeis.69022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security systems are one of the crucial topics in the era of digital transformation. In the use of digital technology, security systems are used to ensure the confidentiality, integrity, and availability of data. Machine learning techniques can be applied to support the system's adaptability to the environment, so that prevention, detection and recovery can be carried out. Given the importance of these things, it is necessary to review the literature to find out how machine learning is applied to security systems. This paper presents a summary of 31 research papers to determine what machine learning techniques or methods are the most promising for prevention, detection and recovery. The research stages in this paper consist of 6 stages, namely: formulating research questions, searching for articles, documenting search strategies, selecting studies, assessing article quality, and extracting data obtained from articles. Based on the results of the study, it was found that the K-means method was the most promising for prevention, while for detection, SVM could be used, and for security recovery, machine learning could be implemented using NLP-based features.\",\"PeriodicalId\":31590,\"journal\":{\"name\":\"IJEIS Indonesian Journal of Electronics and Instrumentation Systems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJEIS Indonesian Journal of Electronics and Instrumentation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ijeis.69022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJEIS Indonesian Journal of Electronics and Instrumentation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijeis.69022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

安防系统是数字化转型时代的重要课题之一。在使用数字技术时,安全系统用于确保数据的机密性、完整性和可用性。可以应用机器学习技术来支持系统对环境的适应性,从而进行预防、检测和恢复。考虑到这些事情的重要性,有必要回顾一下文献,找出机器学习如何应用于安全系统。本文总结了31篇研究论文,以确定哪些机器学习技术或方法在预防、检测和恢复方面最有希望。本文的研究阶段分为6个阶段,分别是:制定研究问题,检索文章,记录检索策略,选择研究,评估文章质量,提取文章数据。根据研究结果,K-means方法最有希望用于预防,而对于检测,可以使用SVM,对于安全恢复,可以使用基于nlp的特征实现机器学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pembelajaran Mesin untuk Sistem Keamanan - Literatur Review
Security systems are one of the crucial topics in the era of digital transformation. In the use of digital technology, security systems are used to ensure the confidentiality, integrity, and availability of data. Machine learning techniques can be applied to support the system's adaptability to the environment, so that prevention, detection and recovery can be carried out. Given the importance of these things, it is necessary to review the literature to find out how machine learning is applied to security systems. This paper presents a summary of 31 research papers to determine what machine learning techniques or methods are the most promising for prevention, detection and recovery. The research stages in this paper consist of 6 stages, namely: formulating research questions, searching for articles, documenting search strategies, selecting studies, assessing article quality, and extracting data obtained from articles. Based on the results of the study, it was found that the K-means method was the most promising for prevention, while for detection, SVM could be used, and for security recovery, machine learning could be implemented using NLP-based features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信