{"title":"不确定性下的碳吸收和森林管理:为什么自然干扰很重要","authors":"G. C. Kooten, C. Johnston, Fatemeh Mokhtarzadeh","doi":"10.1561/112.00000446","DOIUrl":null,"url":null,"abstract":"This study examines how natural disturbance can adversely affect the carbon sequestration potential of the forest, and the potential contribution that genomics might make towards offsetting these impacts when carbon is priced. A stochastic dynamic programming model of the BC interior, which includes a detailed carbon accounting module, shows that harvests are delayed as carbon prices rise, with less carbon stored in harvested wood products and more in the forest ecosystem, but an increase in the risk of natural disturbance causes the landowner to harvest sooner. As natural disturbance increases in prevalence and severity, this will somewhat offset the lengthening of rotation age that occurs when carbon is priced. With disturbance, the total amount of carbon sequestered falls significantly, but some of this can be recovered through proactive planting of genetically modified (GM) stems that are more productive and less susceptible to disturbance. To make such an investment worthwhile, however, the costs of planting GM stock should not exceed $120–$150/ha. Finally, this study suggests that a modest price of carbon (somewhat less than $25/tCO2) can be an effective incentive to encourage land owners to reduce the rotation age brought about by disturbance, and generate additional carbon offsets.","PeriodicalId":54831,"journal":{"name":"Journal of Forest Economics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1561/112.00000446","citationCount":"8","resultStr":"{\"title\":\"Carbon Uptake and Forest\\nManagement under Uncertainty:\\nWhy Natural Disturbance Matters\",\"authors\":\"G. C. Kooten, C. Johnston, Fatemeh Mokhtarzadeh\",\"doi\":\"10.1561/112.00000446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines how natural disturbance can adversely affect the carbon sequestration potential of the forest, and the potential contribution that genomics might make towards offsetting these impacts when carbon is priced. A stochastic dynamic programming model of the BC interior, which includes a detailed carbon accounting module, shows that harvests are delayed as carbon prices rise, with less carbon stored in harvested wood products and more in the forest ecosystem, but an increase in the risk of natural disturbance causes the landowner to harvest sooner. As natural disturbance increases in prevalence and severity, this will somewhat offset the lengthening of rotation age that occurs when carbon is priced. With disturbance, the total amount of carbon sequestered falls significantly, but some of this can be recovered through proactive planting of genetically modified (GM) stems that are more productive and less susceptible to disturbance. To make such an investment worthwhile, however, the costs of planting GM stock should not exceed $120–$150/ha. Finally, this study suggests that a modest price of carbon (somewhat less than $25/tCO2) can be an effective incentive to encourage land owners to reduce the rotation age brought about by disturbance, and generate additional carbon offsets.\",\"PeriodicalId\":54831,\"journal\":{\"name\":\"Journal of Forest Economics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1561/112.00000446\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Forest Economics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1561/112.00000446\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forest Economics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1561/112.00000446","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
Carbon Uptake and Forest
Management under Uncertainty:
Why Natural Disturbance Matters
This study examines how natural disturbance can adversely affect the carbon sequestration potential of the forest, and the potential contribution that genomics might make towards offsetting these impacts when carbon is priced. A stochastic dynamic programming model of the BC interior, which includes a detailed carbon accounting module, shows that harvests are delayed as carbon prices rise, with less carbon stored in harvested wood products and more in the forest ecosystem, but an increase in the risk of natural disturbance causes the landowner to harvest sooner. As natural disturbance increases in prevalence and severity, this will somewhat offset the lengthening of rotation age that occurs when carbon is priced. With disturbance, the total amount of carbon sequestered falls significantly, but some of this can be recovered through proactive planting of genetically modified (GM) stems that are more productive and less susceptible to disturbance. To make such an investment worthwhile, however, the costs of planting GM stock should not exceed $120–$150/ha. Finally, this study suggests that a modest price of carbon (somewhat less than $25/tCO2) can be an effective incentive to encourage land owners to reduce the rotation age brought about by disturbance, and generate additional carbon offsets.
期刊介绍:
The journal covers all aspects of forest economics, and publishes scientific papers in subject areas such as the following:
forest management problems: economics of silviculture, forest regulation and operational activities, managerial economics;
forest industry analysis: economics of processing, industrial organization problems, demand and supply analysis, technological change, international trade of forest products;
multiple use of forests: valuation of non-market priced goods and services, cost-benefit analysis of environment and timber production, external effects of forestry and forest industry;
forest policy analysis: market and intervention failures, regulation of forest management, ownership, taxation;
land use and economic development: deforestation and land use problem, national resource accounting, contribution to national and regional income and employment.
forestry and climate change: using forestry to mitigate climate change, economic analysis of bioenergy, adaption of forestry to climate change.