递归的一个强Borel-Cantelli引理

IF 0.7 3区 数学 Q2 MATHEMATICS
T. Persson
{"title":"递归的一个强Borel-Cantelli引理","authors":"T. Persson","doi":"10.4064/sm220216-2-7","DOIUrl":null,"url":null,"abstract":"ABSTRACT. Consider a mixing dynamical systems ([0, 1], T, μ), for instance a piecewise expanding interval map with a Gibbs measure μ. Given a non-summable sequence (mk) of non-negative numbers, one may define rk(x) such that μ(B(x, rk(x)) = mk. It is proved that for almost all x, the number of k ≤ n such that Tk(x) ∈ Bk(x) is approximately equal to m1 + . . . + mn. This is a sort of strong Borel–Cantelli lemma for recurrence. A consequence is that","PeriodicalId":51179,"journal":{"name":"Studia Mathematica","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A strong Borel–Cantelli lemma for recurrence\",\"authors\":\"T. Persson\",\"doi\":\"10.4064/sm220216-2-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT. Consider a mixing dynamical systems ([0, 1], T, μ), for instance a piecewise expanding interval map with a Gibbs measure μ. Given a non-summable sequence (mk) of non-negative numbers, one may define rk(x) such that μ(B(x, rk(x)) = mk. It is proved that for almost all x, the number of k ≤ n such that Tk(x) ∈ Bk(x) is approximately equal to m1 + . . . + mn. This is a sort of strong Borel–Cantelli lemma for recurrence. A consequence is that\",\"PeriodicalId\":51179,\"journal\":{\"name\":\"Studia Mathematica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/sm220216-2-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/sm220216-2-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要考虑一个混合动力系统([0,1],T, μ),例如一个Gibbs测度为μ的分段展开区间映射。给定一个非负数的不可和数列(mk),可以定义rk(x)使得μ(B(x, rk(x)) = mk。证明了对于几乎所有的x, k≤n的个数使得Tk(x)∈Bk(x)近似等于m1 +…+锰。这是递归的一种强Borel-Cantelli引理。结果就是
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A strong Borel–Cantelli lemma for recurrence
ABSTRACT. Consider a mixing dynamical systems ([0, 1], T, μ), for instance a piecewise expanding interval map with a Gibbs measure μ. Given a non-summable sequence (mk) of non-negative numbers, one may define rk(x) such that μ(B(x, rk(x)) = mk. It is proved that for almost all x, the number of k ≤ n such that Tk(x) ∈ Bk(x) is approximately equal to m1 + . . . + mn. This is a sort of strong Borel–Cantelli lemma for recurrence. A consequence is that
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Mathematica
Studia Mathematica 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
72
审稿时长
5 months
期刊介绍: The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信